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The algorithm has �(�3) time & �(�2) space complexity.Consider the Metric Nearness Problem [1]:
                        min

�∈ℝ�×�
 � − �� �2

                      ��� = 0
subject to      ��� = ��� ≥ 0   ,  ∀1 ≤ �, �, � ≤ �
                     ��� ≤ ��� + ���
n Metric nearness model seeks a valid metric � that is 

nearest to the observed non-metric ��.
n In practice, existing approaches still face non-trivial 

challenges from a large number of �(��) constraints.

Result-I. Problem Size
Table 1. The largest problem size � solved within 12 hours.

Result-II. Nearness and Optimality
Nearness is measured by NMSE=  �∗ − �� �2/ �� �2 . 
Constraint Satisfaction Ratio ��� = # ���������/# �����.

Figure 1. NMSE/CSR vs Iterations on Noisy Distance. 
�� = {���� } ={max {0, ���∗ + � ∙ mean(�∗) ∙ N(0,1)}}.

Result-III. Updates and Running Time

Figure 2. Updates/Time vs Iterations on Noisy Distance.
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Algorithm 1: The Proposed HLWB Algorithm

1: X0 ← Calibrate (Do) ▷ Step 1: Embedding Calibration
2: for t← 1, · · · ,maxiter do ▷ Step 2: HLWB Projection
3: Xt ← 1

t+2 ×Do + t+1
t+2 ×Xt−1;

4: for each (i, j, k) do
5: δ ← Xt

ij−Xt
ik−Xt

kj

3 ;
6: if δ > 0 then ▷ violation detected
7: Xt

ij ← Xt
ij − δ;

8: Xt
ik ← Xt

ik + δ;
9: Xt

kj ← Xt
kj + δ;

CPLEX MOSEK TRF [1] PAF [5] HLWB
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MNIST: 1 = 0.8, n = 1000
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CIFAR100: 1 = 0.8, n = 1000
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MNIST:  = 0.8, n = 1000
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CIFAR100:  = 0.8, n = 1000

, for � = 0,1,⋯.

subject to

We designed a two-stage approach to solve it.

Stage-I. Embedding Calibration
The approach first shrinks the scope of distance metrics 
to isometrically embeddable matrices. 
n Schoenberg’s result on isometrical embedding 

provides a sufficient and necessary condition [2].
Theorem 1.  � = {���} ∈ ℝ�×� i s  an embeddable 
matrix iff the matrix � =exp (−��) is PSD for � > 0.

n We seek an embeddable matrix by solving. 
                           �∗ = min

               �∈ℝ�×�
 � − �� �2

                         ��� = 1, 0 ≤ ��� = ��� ≤ 1, ∀1 ≤ �, � ≤ �
                         � ≽ 0 (PSD)

Dykstra’s projection algorithm [3] is conducted on two 
closed convex sets, i.e., � and �, defined by
� = {� ∈ ℝ�×�|� ≽ 0},
� = {� ∈ ℝ�×�|��� = 1, 0 ≤ ��� = ��� ≤ 1,∀ �, �} .
where running for a few iterations is efficient to 
obtain a good estimate �0 =−log (�∗ )/�. 

Stage-II. HLWB Projection
Then the approach starts with the initial solution in Stage-
I and refines it iteratively to the optimum.
n The region defined by the triangle inequalities is the 

intersection of all ����’s, denoted by
���� = {� ∈ ℝ�×�|��� ≤ ��� + ���}.

n We use a HLWB projection [4] to sequentially project 
a given point �� onto the mulitple closed convex sets.
Theorem 2. Let �1, ⋯, ��  be a family of closed 
convex subsets such that ℳ� =  �=1

� �� ≠ ∅. Set
                ��+1 = 1

�+2
�� + �+1

�+2
��

                ��+1 = P�1⋯P��(�
�)

Then �� → Pℳ�(�
�), �� → Pℳ�(�

�) as � → ∞.




