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Introductlon Algorlthm

Consider the Metric Nearness Problem [1 The algorithm has ( 3) time & ( 2) space complexity.
mlf:I( — 2 Algorithm 1: The Proposed HLWB Algorithm
a =0 1: XY < Calibrate (D°) > Step 1: Embedding Calibration
subject i — >0 1< . < ? for ?f)( ?i t+_2 gga(z)zfe idg) i1, > Step 2: HLWB Projection
. = + 4: for each (7, j, k) do
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B Metric nearness model seeks a valid metric  that 1s . i£5> 0 then ’ s violation detected
nearest to the observed non-metric 7: Xt +— XL -6
B [n practice, existing approaches still face non-trivial 8: ka — X . +0;
challenges from a large number of () constraints. o Xy X j o

Proposed Method

We designed a two-stage approach to solve it. Result-1. Problem Size

Stage-1. Embedding Calibration Table 1. The largest problem size solved within 12 hours.

CPLEX MOSEK TRF[1] PAF[5] HLWB
<300 <300 <2,000 ~3,000 >10,000

The approach first shrinks the scope of distance metrics
to isometrically embeddable matrices.

B Schoenberg’s result on 1sometrical embedding Result-II. Nearness and Optimality
provides a sufficient and necessary condition [2]. Nearness is measured by NMSE= — 2/ 2
Theorem 1. ={ } " is an embeddable Constraint Satisfaction Ratio —# /#
matrix iff the matrix =exp(— )isPSDfor =>0.| | |- NMSE-TRF = =NMSE-PAF ——NMSE-HLWB
B We seek an embeddable matrix by solving. | | = — CSR-TRE = -"CoRPAF ——CSRHLWE
. m|n 2 032 MNIST: ¢ = 0.8, n = 1000 100 0_2(5:!FAR1001 (=0.8,n= 100900
| — 1’ 0 < — < 1, 1 < < Luo.zsé;:', 0.98 0.98
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Dykstra’s projection algorithm [3] is conducted on two e k o 094
closed convex sets, 1.e., and , defined by O 0 40 60 8o 109° O e o0 80 109
_ x Iterations lterations
{ | 0}, Figure 1. NMSE/CSR vs Iterations on Noisy Distance.
={ ] =10 = <1, |} . _
. . .. . ={ }={max{0, + -mean( )-N(01)}}
where running for a few iterations 1s efficient to . .
obtain a g()()d estimate 9 =— |Og ( )/ . Result-111. Updates and Runnlng Time
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Then the approach starts with the initial solution in Stage- g | F - R E
I and refines it iteratively to the optimum. ~ 5 = 7 -
B The region defined by the triangle inequalities 1s the oo o |
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intersection of all s, denoted by terations terations
={ | < + ) Figure 2. Updates/Time vs Iterations on Noisy Distance.
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