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SpatialScope: A unified toolbox for integrative analysis of spatial
and single-cell transcriptomics data
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B Spatial transcriptomics (ST)

As a newly developed technology in recent years, ST technologies have been developed to quantify spatially localized transcriptomes, which accelerated the
capacity to elucidate the development of healthy tissue, and tumor microenvironment of cancers. However, current two major ST technologies have their own
limitations: seg-based ST technology cannot achieve single-cell resolution, one spatial location may contain multiple cells; image-based ST technology suffers from
limited gene throughput, only a few hundred to a few thousand genes can be detected.

B SpatialScope

We developed an unified toolbox, SpatialScope, that can integrate multi-platform ST and scRNA-seq data. For seq-based ST data, we decompose low-resolution
ST data into single-cell level by combining deep learning and multimodality data (HE staining imaging, spatial location, spatial transcriptomics, scRNA-seq) , thus
achieving single-cell resolution. For the image-based ST data, we impute the gene expressions of unmeasured genes with a deep generative model, thus achieving

whole transcriptome coverage.

Impute expression profiles
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Method Seqg-based ST data: We first obtain the spatial locations of individual cells
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