

Explainable Trajectory Representation Based On Dictionary Learning

Yuanbo Tang Yang Li*

Tsinghua-Berkeley Shenzhen Institute, Tsinghua University * Corresponding author

Background.

- Trajectory representation learning provides great opportunities to understand vehicular traffic patterns.
- Downstream tasks includes Trajectory compression, Trip time estimation, Public transportation route planning, etc[1].

Transforming a trajectory into an embedding vector

Motivation.

- Embedding generated by deep-learning method is usually a dense vector whose dimension lacks semantic information.
- It is difficult to interpret the learned representation and use in applications[2].

Algorithm

- 1. Relax the binary constraint and get the fractional solution R^*
- 2. Obtain the rounded solution R^r as follows:
- Algorithm 1 randomized rounding
- **Input:** *M*: trajectory matrix; *D*: pathlet matrix; R_0 : initial solution; ϵ, θ : hyper parameters;

Output: Optimal binary matrix R^r

- 1: # Step1, we compute the fractional solution R^* using gradient descend.
- 2: initial $R_0 = 0$;

3: repeat

- 4: compute gradient directions $g_k = \nabla f(R_k)$;
- 5: update the decision matrix $R_{k+1} = R_k \alpha g_k$;
- 6: clip the result to make sure $0 \le R_k \le 1$;
- 7: **until** $(|f(R_k) f(R_{k-1})| < \epsilon)$
- 8: #Step2, we compute rounded solution R^r based on R^* .
- 9: $P(R_{i,j}^r = 1) = min(1, \theta R_{i,j}^*)$

Probability bound. Given the size of dataset |T|, trajectory matrix M, pathlet matrix D and trade off parameter λ . Then for constant parameter θ , we have the following bound on the cost of R^r :

$$P[C(B^r) < 2\theta \frac{\lambda + 1}{2} C(B^*) \text{ and } DB^* > M] > \frac{1}{2} - |T|e^{-\theta}$$

Purpose.

- Extract common trajectory segments(called pathlet[3]) as a dictionary.
- Represent trajectory by concatenating pathlets from this dictionary.
- Generate semantic trajectory representation vectors, each dimension corresponding to a mobility pattern.

Evaluation.

- This dictionary should be able to reconstruct all trajectories.
- Smaller dictionary is better, which means less redundant information.
- Average number of pathlets used to reconstruct trajectory should be as small as possible.

Problem Formulation

Terminology. Given a trajectory dataset T on roadmap $G = \langle E, V \rangle$, P(t) is used to describe all possible subpath p of $t \in T$ and $\overline{P} = \bigcup_{t \in T} P(t)$ refers to the whole pathlet space. The task is to find best pathlet dictionary $P \subset \overline{P}$ according to evaluation indicators.

$P[C(R^r) \leq 2\theta - \frac{\lambda}{\lambda} C(R^r) \text{ and } DK \geq M] \leq \frac{1}{2} - |I|^{\epsilon}$

Experiment & Result

Case study.

- Pathlets are visualized to verify if common patterns are found.
- Pathlets in Fig(a) refers to turning around or turning left on the overpass, which is consistent with our cognition in life.
- Fig(b) illustrates how a trajectory is reconstructed by pathlets.

(a)Common mobility pattern on an overpass

(b)Trajectory decomposition using pathlets

Effect of λ .

- The average number of pathlets need to construct trajectory decreases as λ increases, which means longer pathlet are selected.
- The algorithm prefers a more compact dictionary with a smaller $\lambda.$

Matrix are used to formulate the objective and constraint

- R is decision matrix, corresponding to dictionary P.
- Matrix D and M record the cover relationship between T, E, \overline{P}

Based on this, the problem can be formulated as follows:

Comparison.

• Proposed method outperforms heuristic method and dynamic programming method[3] under different lambda on synthesis dataset .

Conclusion

- A novel dictionary learning based method with theoretical probability bound analysis is proposed to solve the trajectory representation problem.
- Explainable trajectory representation are generated, providing a deeper insight into mobility patterns.
- This method will be applied in more real-world applications to verify its generality in future work.

Reference

[1] T.-Y. Fu and W.-C. Lee, "Trembr: Exploring road networks for trajectory representation learning," in ACM Transactions on Intelligent Systems and Technology, vol. 11, pp. 1–25.
[2] P. Y. e. al, "T3s: Effective representation learning for trajectory similarity computation," in 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021.
[3] C. Chen . e. al, "Pathlet Learning for Compressing and Planning Trajectories," in Proceedings of the 21st ACM SIGSPATIAL.

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

雷达信号处理国家级重点实验室 National Key Laboratory of Radar Signal Processing

综合业务网理论及关键技术国家重点实验室

State Key Laboratory of Integrated Services Networks

广东省大数据计算基础理论与方法重占实验室

小自八奴酒竹弄金叫生吃马刀冶圭志天怨主

GuangDong Key Laboratory of Big Data Computing