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Games on networks

I Various classes of games are defined in terms of a network. For
instance:

I Network formation games.
I Information transmission games.
I Routing games.
I Location games.

I For many of these games the efficiency of their equilibria has
been studied.

I In particular the computer science literature has dealt with
measures of inefficiency and their bounds.



Cost games

I A cost game Γ = (N ,A ,c), where
I N = {1, . . . ,N} is the set of players,
I Ai is the set of actions of player i and A = ×i∈N Ai ,
I ci : A → R is the cost function of player i and c = (c1, . . . , cN).

I SC(a) =
∑

i∈N ci (ai ) is the social cost of action profile a.
I a∗ ∈ A is a Nash equilibrium if for all i ∈ N and all ai

ci (a∗) ≤ ci (ai ,a∗−i ).

I E (Γ) is the set of Nash equilibria of game Γ.
I BEq(Γ) = mina∈E (Γ) SC(a) is the best equilibrium social cost.
I WEq(Γ) = maxa∈E (Γ) SC(a) is the worst equilibrium social cost.
I Opt(Γ) = mina∈A SC(a) is the optimum social cost.



Measures of efficiency

I The price of anarchy (PoA) of game Γ is

PoA(Γ) =
WEq(Γ)

Opt(Γ)
.

I Koutsoupias and Papadimitriou (1999), Papadimitriou (2001).
I The price of stability (PoS) of game Γ is

PoS(Γ) =
BEq(Γ)

Opt(Γ)
.

I Schulz and Stier-Moses (2003), Anshelevich et al. (2008).



Congestion games

I A (finite) set E of resources, e.g., edges of a network.
I Achieving a certain goal requires the use of some subsets of

these resources, e.g., edges that form a path from a source to a
destination. Call P the set of feasible subsets.

I Agents are of different types. All the agents of the same type
have the same weight and want to achieve the same goal, i.e.,
go from the same source to the same destination.

I A congestion game is a game where each agent can use a
subset p ∈P to achieve her goal and the cost of using a
resource is a weakly increasing function on the number of agents
who use it.

I Congestion games have been introduced by Rosenthal (1973).
I They have important uses in applications and interesting

mathematical properties.



Symmetric congestion games

I A set N of players.
I A finite set E of resources.
I A set P ⊂ 2E of strategies.
I Call pi the strategy of player i and p = (pi )i∈N the strategy

profile.
I For each p ∈P a flow fp that represents the number of players

who choose strategy p:

fp = card{i ∈ N : pi = p}.

I For each e ∈ E a load
xe =

∑
p3e

p∈P

fp

that represents the number of agents who use resource e.
I For each e ∈ E a weakly increasing delay function ce(xe).
I For each player i , a cost function c(i) : PN → R+

c(i)(p) =
∑
e∈pi

ce(xe).



Potential games

I Let A = ×N
i=1Ai and c = (c(1), . . . , c(N)).

I A game 〈N ,A ,c〉 is an exact potential game if there exists a
function Ψ : A → R such that for all a−i ∈ A−i , for all a′i ,a

′′
i ∈ Ai

c(i)(a′i ,a−i )− c(i)(a′′i ,a−i ) = Ψ(a′i ,a−i )−Ψ(a′′i ,a−i ).

I Potential games admit pure Nash equilibria. They are the local
minima (i.e., minima along each coordinate) of the potential
function.

I Potential games have been studied by Monderer and Shapley
(1996).



Congestion games and potential games

I Symmetric congestion games are potential games, therefore
they admit pure Nash equilibria.

Theorem (Rosenthal (1973))
Let Γ = (N ,P,c) be a symmetric congestion game. Then

Ψ(p) =
∑
e∈E

xe∑
i=1

ce(i)

is a potential function for Γ.



Proof

Proof.
Given a strategy profile p, if player i deviates from pi to p′i , then

x ′e =


xe + 1 if e ∈ p′i \ pi ,

xe − 1 if e ∈ pi \ p′i ,
xe otherwise.

Ψ(p′i ,p−i )−Ψ(p) =
∑

e∈p′i \pi

ce(xe + 1)−
∑

e∈pi\p′i

ce(xe)

=
∑
e∈p′i

ce(x ′e)−
∑
e∈pi

ce(xe)

= c(i)(p′i ,p−i )− c(i)(p)



Symmetric routing games

I A routing game is a special case of congestion game.
I A directed multigraph G = (V ,E ).
I A single origin-destination (O/D) pair (o,d).
I Players choose paths from source to destination.
I In symmetric games all players have the same weight.

do



Nash equilibrium

I Let Γ = (G ,P,c) be a symmetric routing game.
I p∗ ∈ A is a Nash equilibrium of Γ if for all i ∈ N and all ai

ci (p∗) ≤ ci (pi ,p∗−i ),

I that is, ∑
e∈p∗i

ce(xe) ≤
∑

e∈p∗i ∩pi

ce(xe) +
∑

e∈pi\p∗i

ce(xe + 1).

I This last inequality is expressed just in term of loads.



Multiple O/D pairs
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Smoothness

Definition
A game is (λ, µ)-smooth if for every p,p′ ∈P

N∑
i=1

ci (p′i ,p−i ) ≤ λSC(p′) + µSC(p).

Theorem (Roughgarden (2015))
Let λ > 0 and µ < 1. If a game Γ is (λ, µ)-smooth, then

PoA(Γ) ≤ λ

1− µ
.



Proof

Proof.
I Let p∗ be a Nash equilibrium (NE) profile and p̃ an optimum

profile. Then

SC(p∗) =
N∑

i=1

ci (p∗) ≤
N∑

i=1

ci (p̃i ,p∗−i )

≤ λSC(p̃) + µSC(p∗)

I First inequality by NE.
I Second inequality by (λ, µ)-smoothness.



Bound for the PoA

Theorem (Suri et al. (2007))
Let Γ = (G ,P,c) be a symmetric routing game with affine costs.
Then

PoA(Γ) ≤ 5
2
.

The bound is tight.



Proof

Lemma (Christodoulou and Koutsoupias (2005))
For all y , z ∈ N

y(z + 1) ≤ 5
3

y2 +
1
3

z2.



Proof, continued

Proof of Theorem.
For all a,b ≥ 0 and y , z ∈ N

ay(z +1)+by ≤ 5
3

(ay2 +by)+
1
3

(az2 +bz) =
5
3

(ay +b)y +
1
3

(az +b)z.

N∑
i=1

ci (p̃i ,p∗−i ) ≤
∑
e∈E

(ae(x∗e + 1) + be)x̃e

≤
∑
e∈E

5
3

(aex̃e + be)x̃e +
∑
e∈E

1
3

(aex∗e + be)x∗e

=
5
3

SC(p̃) +
1
3

SC(p∗).

Hence the game is
( 5

3 ,
1
3

)
-smooth.



Proof: tightness
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Tightness, continued

I Optimum. All players take a single-hop path.
I Best equilibrium. Same as optimum.
I Worst equilibrium. All players take a two-hop path.
I Opt = BEq = 4.
I WEq = 10.
I PoS = 1, PoA = 5/2.



Symmetric games

Theorem (Correa et al. (2017))
The price of anarchy of a symmetric affine network routing games at
most 5/2.

Proof.
The result is obtained by considering a sequence of networks where
both the number of paths and the number of players are increasing
function of n and the letting n→∞.



Large games

I When the number of players is large, although pure Nash
equilibria are known to exist, computing them becomes daunting.

I It is customary to approximate a finite large network game with a
nonatomic network game.

I The idea is to take the limit of a finite game as the number of
players increases and their size gets smaller and smaller, in a
way that the total mass of players is kept fixed.

I Haurie and Marcotte (1985), Milchtaich (2000), and Jaquot and
Wan (2018) deal with similar problems.

I The limit game has a continuum of players, and the size of each
of them is zero.

I Games with a continuum of players have been studied by
Schmeidler (1973) and Mas-Colell (1984) among others. The
required mathematical machinery is nontrivial.

I There is a simple way to treat nonatomic network routing games.



Nonatomic routing games

I A finite directed multi-graph G = (V ,E ) with vertex set V and
edge set E .

I A finite set of O/D pairs (oi ,d i ), i ∈ I .
I For i ∈ I a traffic demand µi ≥ 0.
I For i ∈ I a set P i of (simple) paths joining oi to d i . The sets P i

are disjoint. P ≡
⋃

i∈I P i .



Nonatomic routing games, continued

I A set of feasible routing flows f = (fp)p∈P in the network

F =
{

f ∈ RP
+ :

∑
p∈P i fp = µi for all i ∈ I

}
.

I A routing flow f ∈ F induces a load on each edge e ∈ E

xe =
∑
p3e

fp.

I x = (xe)e∈E is the load profile on the network.



Nonatomic routing games, continued

I A nondecreasing, continuous cost function ce : [0,∞)→ (0,∞)
represents the latency experienced to traverse edge e.

I ce(xe) is the delay on edge e ∈ E for a load profile x = (xe)e∈E

induced by a feasible routing flow f = (fp)p∈P .
I

cp(f ) ≡
∑
e∈p

ce(xe).

I Γ = (G ,I , {µi}i∈I , {P i}i∈I , {ce}e∈E ) is a (nonatomic) routing
game.



Wardrop equilibrium

I A routing flow f ∗ is a Wardrop equilibrium (WE) of Γ if
cp(f ∗) ≤ cp′(f

∗) for all p,p′ ∈P i such that f ∗p > 0, for all i ∈ I .



Characterization of WE

I WE are solutions of the (convex) minimization problem:

minimize
∑
e∈E

Ce(xe),

subject to xe =
∑
p3e

fp, f ∈ F ,
(WE)

where Ce(xe) =
∫ xe

0 ce(w) dw denotes the primitive of ce.
I WE satisfy ∑

e∈E

ce(x∗e )(xe − x∗e ) ≥ 0 for all f ∈ F .

I All WE have the same social cost.



Social optimum

I A socially optimum (SO) flow f̃ is a solution to the total cost
minimization problem:

minimize SC(f ) =
∑
p∈P

fpcp(f ),

subject to f ∈ F .

(SO)

I Equivalently

minimizex∈X SC(x) =
∑
e∈E

xece(xe),

where X = {x : xe =
∑
p3e

fp, f ∈ F}.
(SO)



Characterization of SO

I Define c̃e(x) = ce(x) + xc′e(x).
I Let for every e ∈ E , the function x 7→ xce(x) be convex. Then f̃ is

an equilibrium of the game
Γ̃ = (G ,I , {µi}i∈I , {P i}i∈I , {c̃e}e∈E ).



Roughgarden and Tardos

I Roughgarden and Tardos (2002) showed that the PoA in
(nonatomic) routing games with affine costs never exceeds 4/3,
irrespective of the network’s topology.

I If the cost functions are polynomials of degree d or less, the
worst-case value of the PoA grows as Θ(d/ log d),
(Roughgarden (2003)).

I Hence, the selfish routing can be arbitrarily bad in networks with
polynomial costs.

I Given the typically nonlinear relation between traffic loads and
travel times, the intervention of a central planner seems
necessary in order to regain some efficiency.



A geometric look at PoA

Theorem (Roughgarden and Tardos (2002))
The PoA in games with affine costs is at most 4/3.

0 xe x∗e

βe

ce(xe)

ce(x∗e )

ce(x) = αex + βe



Proof (Correa et al. (2008))

Proof.

SC(x∗) =
∑
e∈E

ce(x∗e )x∗e

≤
∑
e∈E

ce(x∗e )xe

=
∑
e∈E

ce(xe)xe +
∑
e∈E

(ce(x∗e )− ce(xe)) xe

≤ SC(x) +
1
4

∑
e∈E

ce(x∗e )x∗e

= SC(x) +
1
4

SC(x∗)



Similar proof

I A similar technique can be used to prove bounds for the PoA
when costs are polynomial.



Pigou’s model (1920)
Pigou was probably the first to point out the inefficiencies of selfish
routing.

o d

c1(x) = 1

c2(x) = x

I If the total demand is µ = 1, in equilibrium all the flow goes to the
bottom edge, everybody experiences a delay of 1, and the total
cost is 1.

I A central planner could do better by splitting the travelers equally
among the two roads, achieving an optimal cost of 3/4.

I Hence PoA= 4/3.

What if the total demand is not 1?
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Pigou, continued

Price of Anarchy for the Pigou model, as a function of the demand
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I Is this behavior of PoA general, or is it specific to the Pigou
model?

I Is the issue relevant?



High congestion

I Youn et al. (2008), O’Hare et al. (2016) show that the PoA is
usually close to 1 for very high and very low traffic, and it
fluctuates in the intermediate regime.



Is it always true?

I Is it always the case that the PoA goes to one, as the demand
increases?

I Is it at least true for single O/D networks?
I Is it at least true for parallel networks?
I Is it true for well-behaved, e.g., convex, cost functions?



Counterexample (Colini-Baldeschi et al. (2017))

o d

c1(x) = [1 + 1/2 sin(log x)] x2

c2(x) = x2

c3(x) = [1 + 1/2 cos(log x)] x2

I Single O/D.
I Parallel network.
I Convex cost functions.



Cost functions
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Periodic behavior
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Figure: The PoA is bounded away from 1 and periodic on a logarithmic scale.



Single O/D with polynomial costs

Theorem
If the network has a single O/D and the costs are polynomial, then

lim
µ→0

PoA(Γµ) = 1,

lim
µ→∞

PoA(Γµ) = 1.



Regularly varying functions

Definition
A function g : [0,∞)→ (0,∞) is regularly varying at ω (ω = 0 or
ω =∞) if

h(x) = lim
t→ω

g(tx)

g(t)
is finite and nonzero for all x ≥ 0.

I Standard examples of regularly varying functions include all
affine, polynomial and logarithmic/polylogarithmic functions.

I The notion itself dates back to the work of Karamata (1930,
1933) and has been used extensively in probability and large
deviations theory.



Benchmark functions & Tightness

I A regularly varying c : (0,∞)→ (0,∞) is called a benchmark for
Γµ at ω if the following (possibly infinite) limits exist for all edges
e ∈ E

αe = lim
x→ω

ce(x)

c(x)
.

An edge e is fast, slow, or tight relative to c if αe is 0,∞, or
in-between.

I The c-index of a path p ∈P is determined by its slowest edge

αp = max
e∈p

αe.

I The fastest paths are those with smallest c-index

α = min
p∈P

αp,

I When 0 < α <∞ we say that the benchmark is tight, and then
we say that a network is tight if it admits a tight benchmark.
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Single O/D: main results

Theorem
Let Γµ be a nonatomic routing game with a single O/D pair.

I If the network is tight under light traffic (ω = 0), then

lim
µ→0

PoA(Γµ) = 1.

I If the network is tight under heavy traffic (ω =∞), then

lim
µ→∞

PoA(Γµ) = 1.
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Multiple O/D pairs

A family of O/D pairs i ∈ I with demands µi to be routed
from origin oi to destination di using the paths p ∈P i .

d1

d2

d3

o3

o2

o1

Total demand µ =
∑

i∈I µi



Multiple O/D: high congestion

I If there is a single O/D pair, the network becomes highly
congested when the inflow grows to infinity.

I If there are several O/D pairs, the traffic inflow of each pair could
be growing at very different rates.

I In particular, the inflow of some O/D pairs could remain finite (or
even vanish), but the network may still become heavily
congested if the aggregate demand grows large.



Multiple O/D: high congestion

I The total traffic demand in the network is

µ =
∑
i∈I

µi ,

I The relative inflow of the i-th O/D pair is

λi = µi/µ.

I High congestion refers to the limit µ→∞, with no assumptions
on the behavior of the relative inflow vector λ = (λi )i∈I in this
limit.



Tightness – Multiple O/D

I Define
αi = min

p∈P i
αp,

α = max
i∈I

αi ,

I The network is tight if 0 < α <∞.



Multiple O/D: main results

Theorem
Consider a multiple O/D network with fixed relative inflow rates λi and
a variable total demand µ. If the network is tight at ω, then

lim
µ→ω

PoA(Γµ) = 1.

I Tightness requires that every O/D pair has a path which is not
slow, and that at least one O/D pair is tight.

I This is considerably weaker than asking every O/D pair to be
tight, so the conditions under which the price of anarchy
converges to 1 are very lax.
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Variable inflow rates

I Let Γn be a sequence of nonatomic routing games with total
demand µn =

∑
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n induced by a sequence of inflow rates µi
n

for each i ∈ I .

I The relative inflow rates λi
n = µi

n/µn could now exhibit very
different behaviors as n→∞.

Definition
A subset I ′ ⊆ I of O/D pairs is called salient if the aggregate
fraction of the traffic generated by the O/D pairs in I ′ is
non-negligible in the limit, namely

lim inf
n→∞

∑
i∈I ′

λi
n > 0. (1)
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Variable inflow rates, continued

Theorem
Let Γn be a sequence of nonatomic routing games with inflow rates
µi

n, and total inflow µn =
∑

i∈I µi
n. Suppose that:

I Traffic is either light or heavy in the limit, i.e.,
limn→∞ µn = ω ∈ {0,∞}.

I Every O/D pair has a path which is not slow, i.e., αi <∞ for all
i ∈ I .

I The set of tight O/D pairs is salient, i.e.,
lim infn→∞

∑
i:αi>0 λ

i
n > 0.

Then PoA(Γn)→ 1 as n→∞.



Takeaways

I Inefficiency of equilibria can be measured with the PoA.
I Bounds for the PoA can be obtained for routing games.
I These bounds are different for atomic and nonatomic games.
I They do not depend on the topology of the network.
I They depend on the cost functions and on the demand.
I In nonatomic routing games for a large class of cost functions the

PoA approaches 1 both in light and heavy traffic.



Open problems

I Can something be said for more general classes of cost
functions, e.g., exponential?

I What is the behavior of the PoA in the region of medium traffic?
I What happens in atomic games?
I Can the framework be generalized to other classes of games?



How to restore efficiency?

I How could a planner devise mechanisms that restore efficiency
to the system?

I The idea is to modify the game in such a way that the equilibrium
of the new game coincides with the optimum of the original game.

I This can (sometimes) be achieved in different ways.
I Some of them counterintuitive.
I For instance destroying some edge in the network.



Braess’s paradox
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Braess’s paradox, continued
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Implementing Braess’s paradox

The elimination of the v → w edge could be achieved by imposing a
very high toll on that edge.



Tolls

I τ = (τe)e∈E ∈ RE a toll vector.
I We allow for both positive and negative tolls.
I cτ

e the cost of edge e under the toll τ , cτ
e (xe) := ce(xe) + τe.

I cτ
p (f ) :=

∑
e∈p cτ

e (xe).
I Γτ := (G ,I ,cτ ).
I P̃ i = {p ∈P i : f̃ p(µ) > 0 for some µ and corresponding SO

f̃ (µ)}.



Optimal tolls

I Can we impose tolls on the edges of the network in such a way
that the equilibrium flow of the game with tolls is socially optimal
for the original game?

I The problem and its solution go back to by Pigou (1920) and
Knight (1924).

I If the demand vector µ is known, tolls can be chosen as

τe = x̃ec′e(x̃e).

I This way the optimum of the game Γ = (G ,I ,c) will be obtained
as an equilibrium of the game Γτ := (G ,I ,cτ ).

I What if the demand µ is not known and is not correctly
estimated?



Robustness

o

v

d

w

c2(x) = 1

c1(x) = x c4(x) = 1

c3(x) = 0

c5(x) = x



Flows

o

v

d

f

o d

w

g

o

v

d

w

h

f + g + h = µ



Optima and equilibria

µ f̃ g̃ h̃ f ∗ g∗ h∗ PoA
[0, 1

2 ] 0 0 µ 0 0 µ 1

[ 1
2 ,1] µ− 1

2 µ− 1
2 1− µ 0 0 µ 2µ2/(2µ− 1

2 )

[1,2] µ
2

µ
2 0 µ− 1 µ− 1 2− µ 4/(µ+ 2)

[2,∞) µ
2

µ
2 0 µ

2
µ
2 0 1



Misestimation

I If µ = 1, then the optimal toll vector is

τ1 = τ5 = 1/2, τ2 = τ3 = τ4 = 0.

I Suppose that the planner estimates µ to be 1, so she uses the
above tolls, but that actually µ = 1/2.

I The equilibrium flow for the game with tolls is f = g = 1/4, h = 0.
I Then the social cost in equilibrium for the game with tolls is

1
4

(
1 +

1
4

+
1
2

)
2 =

7
8

=
5
8

+
1
4
,

where 1
4 is the toll.

I Without the toll the equilibrium social cost would have been
1
2 <

5
8 .



Demand-independent optimal tolls

Definition
τ ∈ RE is called demand-independent optimal toll (DIOT) for Γ if for
every demand vector µ ∈ RI

+ every corresponding equilibrium with
tolls f τ (µ) ∈ Eq(Γτ ) is optimal for Γ.

Definition
We call CBPR(β) the class of cost functions of the form

ce(x) = te + aexβe for all e ∈ E .



DIOTs exist for BPR

Theorem (Colini-Baldeschi et al. (2018))
Consider a game Γ = (G ,I ,c) with ce ∈ CBPR(β) for all e ∈ E . Let τ
be a toll vector such that∑

e∈p

(
τe + β

β+1 te
)
≤
∑
e∈p′

(
τe + β

β+1 te
)
.

for all i ∈ I and all p ∈ P̃ i and all p′ ∈P i .
Then, τ is a DIOT.

Corollary
Consider a game Γ = (G ,I ,c) with BPR-type cost functions. Then
there exists a DIOT for Γ.
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Necessary conditions

Theorem
Consider a game Γ = (G ,I ,c) with BPR-type cost functions. If τ is a
DIOT for Γ, then∑

e∈p

(
τe + β

β+1 te
)

=
∑
e∈p′

(
τe + β

β+1 te
)
.

for all i ∈ I and all p,p′ ∈ P̃ i .



Only BPR

Theorem
Let c be twice continuously differentiable, strictly semi-convex and
strictly increasing, but not of BPR-type. Then there is a congestion
game Γ = (G ,I ,c) with two parallel edges and cost functions c(x)
and c(x) + t for some t ∈ R+ that does not have a DIOT.



Non-negative tolls

Theorem
Consider a game Γ = (G ,I ,c) with BPR-type cost functions where
G is a directed acyclic multi-graph (DAMG). Then there exists a
non-negative DIOT for Γ.



DAMG is not necessary

v v ′

c1(x) = x

c2(x) = 1

c3(x) = x

c4(x) = 1

This graph is not a DAMG, but the following non-negative toll is a
DIOT:

τ1 =
1
2

τ2 = 0, τ3 =
1
2
, τ4 = 0.



Counterexample

Proposition
There are networks with affine costs that do not admit a non-negative
DIOT.



Counterexample, continued

o

u

v

d

c1(x)=2

c4(x)=2

c6(x)=2c5(x)=4x

c2(x)=4x

c3(x)=1

(a) Cost functions.

o

u

v

d

c̃1(x)=2

c̃4(x)=2

c̃6(x)=2c̃5(x)=8x

c̃2(x)=8x

c̃3(x)=1

(b) Marginal cost functions.

Figure: Cost functions c and marginal cost functions c̃ for a cyclic network.



Counterexample, continued

I For each path p ∈P, there exists a value µ of the demand such
that p is used in the system optimum, hence P̃ = P.

I For any DIOT τ ,∑
e∈p

te/2 + τe =
∑
e∈p′

te/2 + τe for all all p,p′ ∈ P̃ i .

I

T =
1
2

+ τ5 + τ3 + τ2,

T = 3 + τ1 + τ4 + τ6,

T = 1 + τ1 + τ2,

T = 1 + τ5 + τ6.

I 0 = 3
2 + τ3 + τ4.

I Either τ3 or τ4 must be negative.



Positive revenue

Theorem
Consider a game Γ = (G ,I ,c) with BPR-type cost functions. If there
exists an order ≺ on V such that for all i ∈ I we have oi ≺ d i , then
there exists a DIOT τ that satisfies∑

e∈E

τexe ≥ 0, for any feasible flow f . (*)

Corollary
Consider a game Γ = (G ,I ,c) with BPR-type cost and a single O/D
pair. Then, there exists a DIOT τ that satisfies (*).



Takeways

I Tolls can be used to achieve efficiency.
I Optimal tolls in general depend on the demand.
I DIOTs exist for nonatomic routing games with bureau of public

roads (BPR) cost functions.
I If the network is a DAMG, then the DIOT can be chosen to be

nonnegative.
I Under the weaker condition that there exists an order of the

vertices such that each origin precedes the corresponding
destination, there exist a DIOT whose total revenue is
nonnegative.



Open problems

I When costs are not BPR can approximately optimal tolls be
computed?

I How good (or bad) would they be?
I What if the game is atomic?
I What if tolls can be exacted only on a subset of edges?
I What if tolls are exacted on vertices?



General social costs

I In several situations it is natural to consider social costs that are
not the sum of the individual costs of the players.

I For instance Vetta (2002) introduces a class of games called
utility games such that:

I Each player i has a set of strategies Ai .
I Call αi(s) the welfare of player i .
I If A = ∪iAi , a social welfare function V (S) is defined for each

S ⊂ A.
I V is submodular.
I

∑
i αi(s) ≤ V (s).

I αi(s) ≤ V (s)− V (s−i).



Bound on PoA

Theorem (Vetta (2002))
If V is monotone, then the PoA of the utility game is at most 2.

I A generalization of the classical location game à la Hotelling is
similar, but does not fall under the same umbrella.



Hotelling beach. Two sellers

I Two ice-cream sellers on a beach.
I Consumers uniformly distributed on the beach.
I They buy from the closer seller.
I Where should the two sellers stand?

0 1
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I In equilibrium they both stand in the middle.

I What if instead of living on a beach, consumers and sellers live
on a network?
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Buyers and sellers

Hypotheses on buyers
I Continuum of buyers, distributed on a network.
I Each one wants to buy one unit of a particular good whose price

is fixed: they shop to the closest location.

Hypotheses on sellers
I A finite number of sellers sell the same good at the same price.
I They simultaneously choose their locations.
I They want to sell as much as possible.
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Generalized Hotelling game

I A normal form game H (n,S,ρ).
I A finite set N = {1, . . . ,n} of players (sellers).
I The same action set S (the network) for each seller.
I The payoff ρi of seller i is the amount of consumers who shop at

her store.



What kind of game?

I Is this a nice game?
I It is not a potential game.
I There is no pure equilibrium for 3 players in the unit interval.

0 1

I It is not possible to use general results to find (pure) equilibria of
this game.



Existence of equilibria

I Pure equilibria of the generalized Hotelling game exist when the
number of sellers is large enough.

Theorem (Fournier and S (2018))
For an arbitrary S, there exists n̄ ∈ N such that for every n ≥ n̄, the
game H (n,S,ρ) admits a pure Nash equilibrium. In particular

n̄ = 3 card(E) +
∑
e∈E

⌈
5λ(e)

λ?

⌉
,

where λ? = mine∈E λ(e) is the length of the shortest edge.



Back to the beach

The unit interval (Hotelling’s beach)
I For n = 2 there exists a unique pure Nash equilibrium.
I For n = 3 there is no pure Nash equilibrium.
I For n = 4,5 there exists a unique pure Nash equilibrium.
I For n ≥ 6 there exist infinitely many pure Nash equilbria.



2 players
0 1

1
2

1
2

Unique equilibrium with 2 players.

2 players
0 1

1
4

1
2

1
4

Unique equilibrium with 4 players.



1 player

2 players0 1

1
6

1
3

1
3

1
6

Unique equilibrium with 5 players.

1 player

2 players0 1

ξ 2ξ η1 η2 · · · · · · · · · · · · · · · ηn−6 ηn−5 2ξ ξ

Example of equilibrium with n players.



Efficiency of equilibria

Equilibrium social cost: 1
8 Optimum social cost: 1

16



I Call En the set of equilibria of H (n,S,ρ).
I For a strategy profile x ∈ Sn, the social cost is

σ(x) :=

∫
S

min
i∈{1,...,n}

d(xi , y) dy .

I The price of anarchy is

PoA(n) :=
maxx∈En σ(x)

minx∈Sn σ(x)
.

I The price of stability is

PoS(n) :=
minx∈En σ(x)

minx∈Sn σ(x)
.





On the unit interval

PoA(n) =

2 if n is even,

2
(

n
n + 1

)
if n > 3 is odd.

For n ≥ 4
PoS(n) =

n
n − 2



Theorem
For any possible network

I PoA(n)→ 2 as n→∞,
I PoS(n)→ 1 as n→∞.



I For finite n we can have PoA(n) ≥ 2.
I Consider a Hotelling game H (9,S3,ρ).
I There is a unique equilibrium x∗ such that

σ(x∗) = 9
(

1
3

)2 1
2

=
1
2
.

I There exists a strategy profile x] such that

σ(x]) = 2 · 7
(

1
7

)2 1
2

+ 5
(

1
5

)2 1
2

=
17
70
.

I Therefore
PoA(9) ≥ 1

2
· 70

17
=

35
17

> 2.
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2/3

2/3

1/3

1/3

1/3

Figure: Equilibrium on S3 with 9 players.
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Figure: Good configuration on S3 with 9 players.



Sketch of the existence proof

1. The graph G = (X ,E) and n are fixed. We want to construct a
pure Nash equilibrium with n players on G. We fix a general
parameter ξ > 0.

2. On each vertex we put a number of sellers that’s equal to the
degree of the vertex.
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Sketch of the existence proof

3. On each edge we put a number of players n(e) that only
depends on the length λ(e) of the edge and on ξ.

v w

2ξ α(e)ξ · · · α(e)ξ α(e)ξ 2ξ 2ξ

1 player
2 players
deg(v) players
deg(w) players

Where α is such that the number of players on e is n(e).



Sketch of the existence proof

4. We prove that if ξ is small enough this profile of location is an
equilibrium, with a number of player equal to∑

e

n(e) = 3 card(E) +
∑
e∈E

⌈
λ(e)

2ξ

⌉

5. Can we find ξ such that f (ξ) = n?
6. No but we can find n′ such that there exists ξ such that f (ξ) = n′,

n′ ≥ n, and n′ − n ≤ card(E).
7. We select the equilibrium with n′ players. We can remove up to

one unnecessary player on each edge to have an equilibrium
with n player.
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Efficiency: Majorization

For a vector z = (z1, . . . , zn), we denote z[1] ≥ · · · ≥ z[n] its
decreasing rearrangement.

Definition
Let x ,y ∈ [0,1]n be such

n∑
i=1

xi =
n∑

i=1

yi

if, for all k ∈ {1, . . . ,n}

k∑
i=1

x[i] ≤
k∑

i=1

y[i].

then we say that x is majorized by y (x ≺ y).
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Definition
A function φ : Rn → R is called Schur-convex if x ≺ y implies
φ(x) ≤ φ(y).

Proposition
If ψ : R→ R is a convex function,

φ(x1, . . . , xn) =
n∑

i=1

ψ(xi ),

then φ is Schur-convex.
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