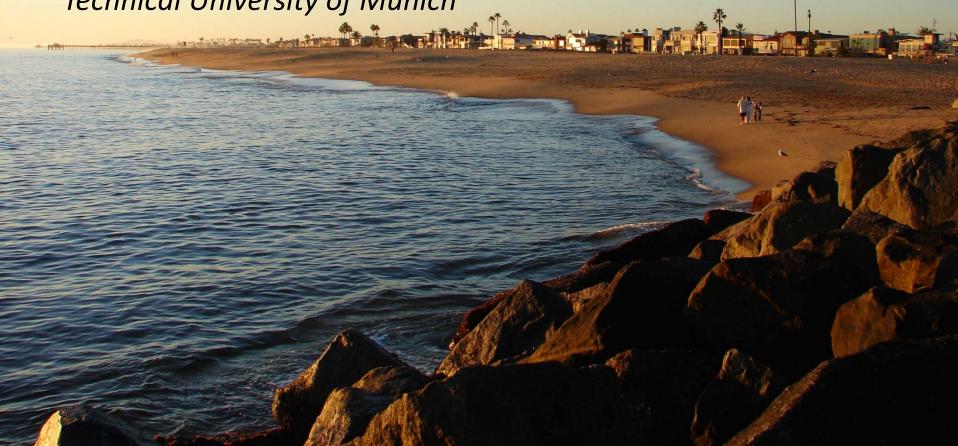


Lee Swindlehurst

Center for Pervasive Communications and Computing
University of California Irvine

Hans Fischer Senior Fellow, Institute for Advanced Study Technical University of Munich



Low Resolution Quantization for Wireless Communications

Collaborators:

Amine Mezghani, Yongzhi Li, Amodh Saxena, Hessam Pirzadeh, Chuili Kong, Deying Kong, Shilpa Rao (UCI)

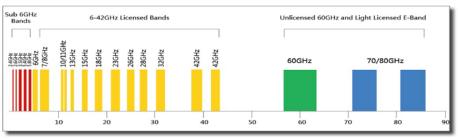
Hela Jedda, Josef Nossek, Wolfgang Utschick (TU Munich, Germany)

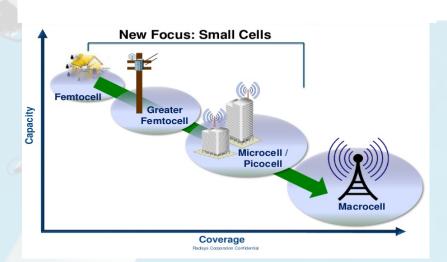
Inbar Fijalkow (Univ. Cergy-Pontoise, France)

The Road to Gigabit Wireless (5G and Beyond)

Three symbiotic trends emerging:

- Deployment of pico- and femto-cells (OoM decrease in cell size)
- Millimeter wave frequencies (OoM increase in bandwidth)
- Massive MIMO (OoM increase in antennas)



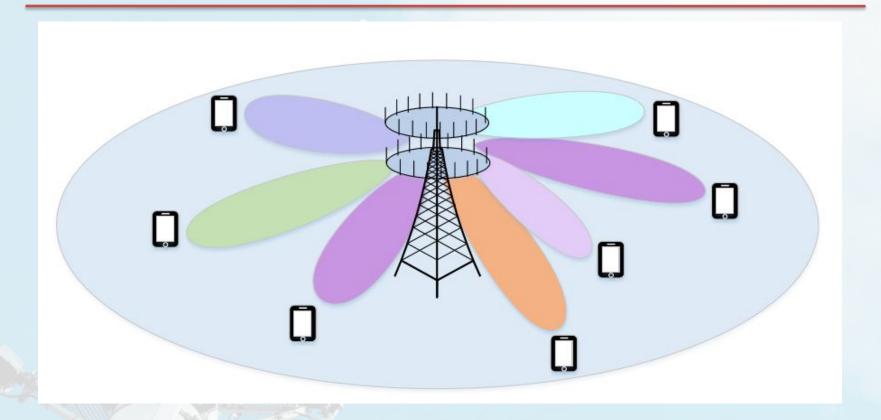


A Symbiotic Relationship

- Millimeter wave frequencies
 - short wavelengths
 - larger propagation losses, shorter range operation
 - little multipath, line-of-sight (LOS) or near-LOS
 - low SNR
 - larger Doppler shifts, more sensitive to mobility
- Massive antenna arrays
 - large array gain
 - size proportional to wavelength
 - narrow, focused beamforming

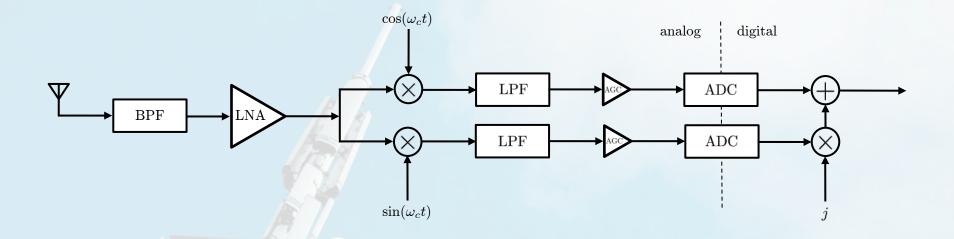
- Small cells
 - short range
 - lower power
 - low mobility
 - interference-limited

Energy Efficiency in Massive MIMO



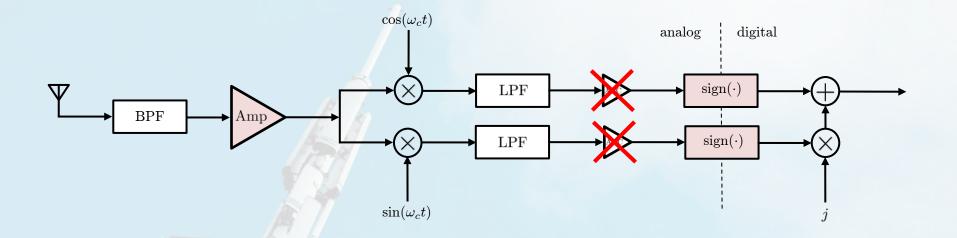
- Energy efficiency and hardware complexity are important issues for massive MISO/MIMO systems
- Use low fidelity hardware (e.g., one-bit ADCs/DACs) to minimize power consumption, low PAPR waveforms to (1) lower OOB interference and spectral regrowth and (2) allow PAs to operate with no back-off

Standard Receiver Implementation



- Full precision ADC requires linear, low-noise amplifiers and AGC
- ADC power consumption grows exponentially with resolution
- A commercial TI 1 Gs/s 12-bit ADC requires as much as 2-4W
- 1 GHz bandwidth, 128 antennas, 12 bit ADC over 6 Tb/sec into DSP
- Not practical for ideal massive MIMO

A One-Bit Receiver



- One-bit ADC \Rightarrow simple RF, no AGC or high cost LNA
- Operates at a fraction of the power (mW)
- Compensate for quantization error with signal processing, more antennas

Single Antenna Theoretical Analysis

AWGN Channel Capacity

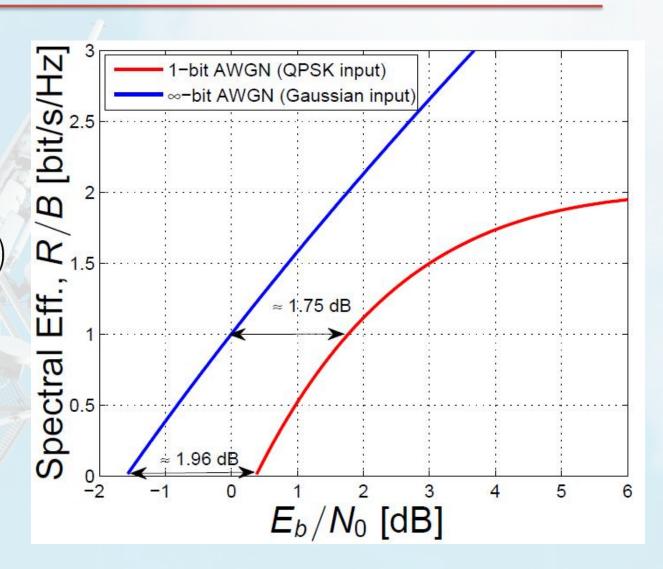
$$B\log_2(1+SNR)$$

1-Bit AWGN Capacity

$$2B\left(1-H_b(\Phi(\sqrt{\text{SNR}}))\right)$$

loss in power efficiency < 2dB when SE < 1.4 bpcu

trade-off between power and energy efficiency is less apparent for 1-bit systems



Nonlinear Analysis: The Bussgang Decomposition

Consider a Gaussian signal that passes through a non-linear operator:

$$\mathbf{r} = \mathcal{Q}(\mathbf{x})$$

Bussgang (Bell Labs, 1952) showed that a statistically "equivalent" (up to second order) linear model exists for the non-linearity

$$r = Q(x) = Ax + q$$

that results in the error \mathbf{q} (here the quantization noise) and the signal \mathbf{x} being uncorrelated, namely

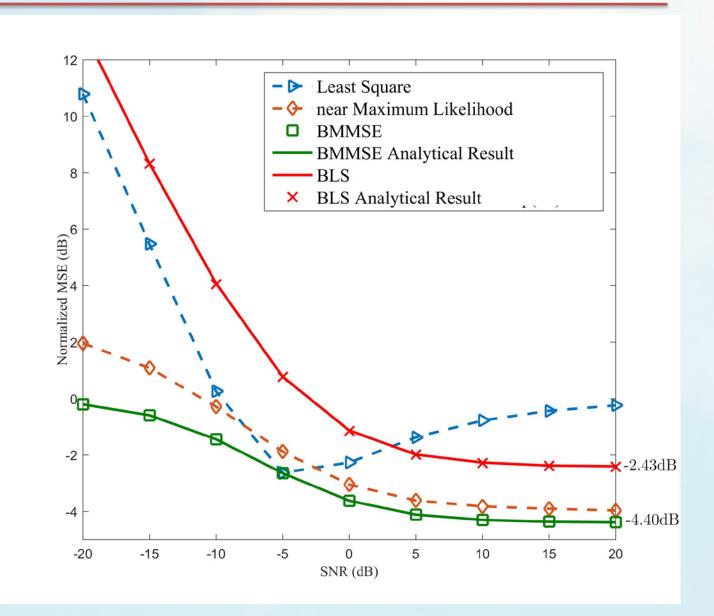
$$\mathbf{A} = \mathcal{E}\{\mathbf{x}\mathbf{r}^T\}\mathcal{E}\{\mathbf{x}\mathbf{x}^T\}^{-1}$$

Linear model that best describes the quantization:

$$\mathbf{A} = \arg\min_{\mathbf{A}} \|\mathbf{r} - \mathbf{A}\mathbf{x}\|^2$$

Channel Estimation using Linear Model

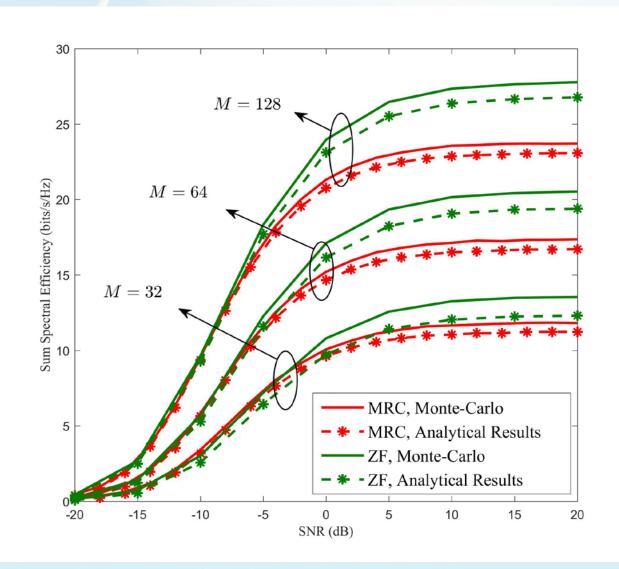
- M = 128
- K = 8
- $\bullet \ \tau = K$
- Rayleigh fading



Sum Spectral Efficiency

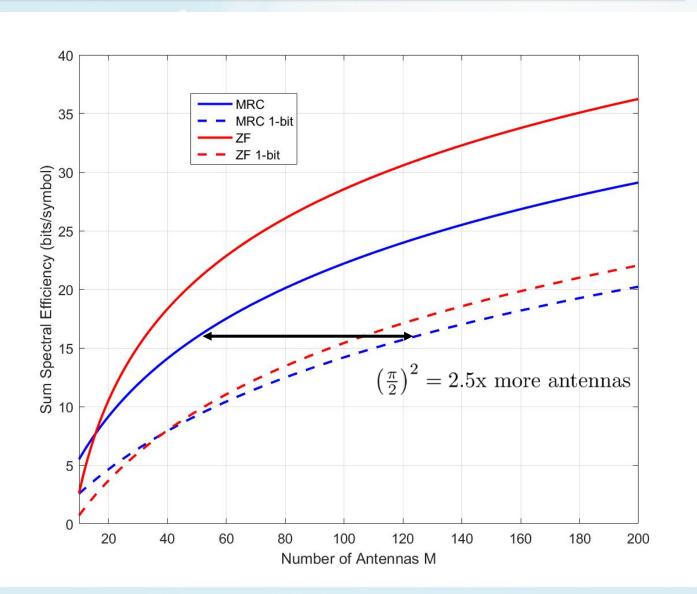
- K = 8 users
- equal power
- coherence interval T = 200
- sum spec. eff.

$$S = \frac{T - K}{T} KR$$



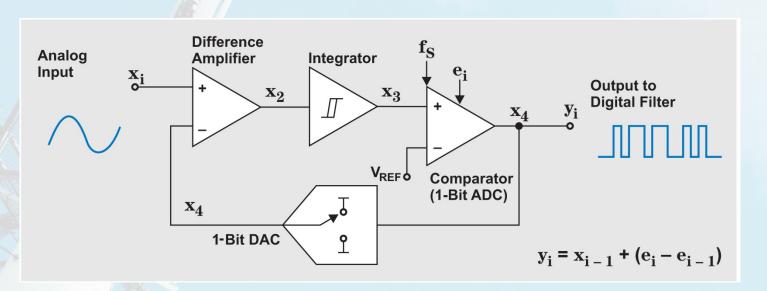
Sum Spectral Efficiency vs. # of Antennas

- flat Rayleigh fading
- -5dB SNR
- K = 8 users
- T = 200 symbols



Alternative ADC Architecture: Oversampling with $\Sigma\Delta$ ADCs

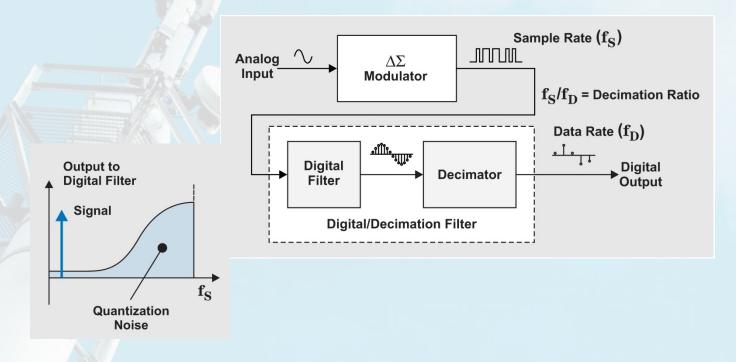
- Oversampling makes desired signal temporally correlated
- Exploit temporal correlation via feedback, quantization of the error signal
- Requires simple additional analog circuitry



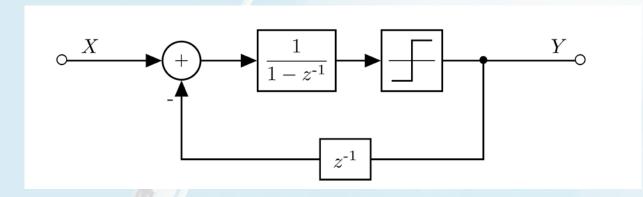
*From Texas Instruments Analog Applications Journal

Oversampling with $\Sigma\Delta$ ADCs

- Desired signal pushed to lower frequencies due to oversampling, quantization noise pushed to higher frequencies (noise shaping)
- post-processing low-pass filter and decimation used to recover desired samples



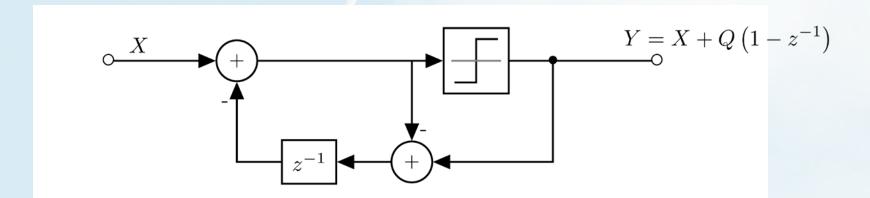
$\Sigma\Delta$ ADC Discrete-Time Equivalent Model

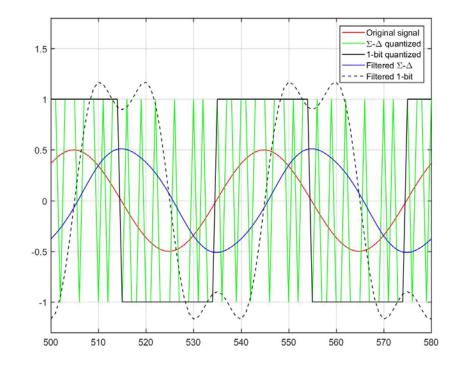


model quantizer as additive noise term Q:

$$Y = (-Yz^{-1} + X) \frac{1}{1 - z^{-1}} + Q$$
$$= X + Q(1 - z^{-1})$$

$\Sigma\Delta$ ADC Discrete-Time Equivalent Model, pt. 2





input
$$X = \sin(\pi n/20)$$

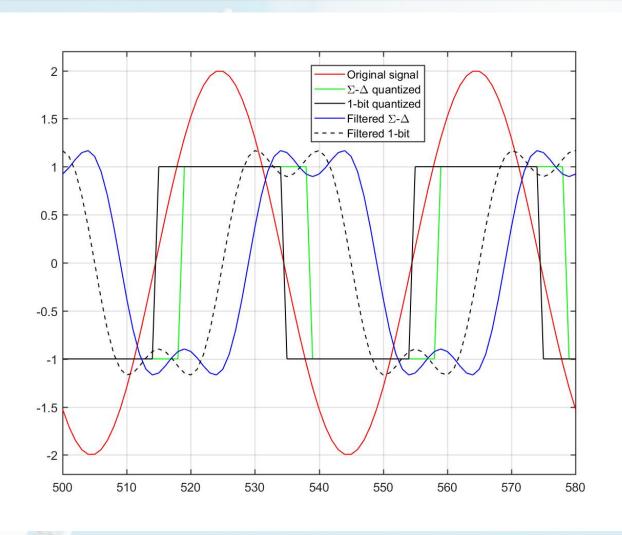
$$\Sigma - \Delta$$
 output

1-bit quantized output

$$\Sigma - \Delta + LPF, \, \omega_c = \frac{\pi}{6}$$

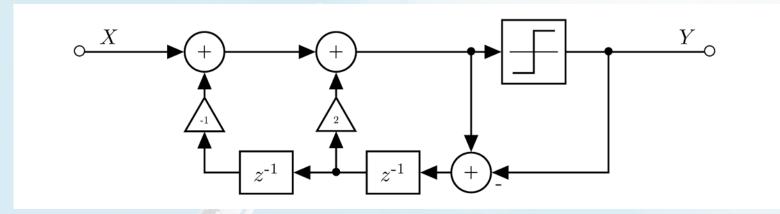
$$1$$
-bit + LPF

Unlike 1-Bit ADC, $\Sigma\Delta$ ADCs Need Gain Control



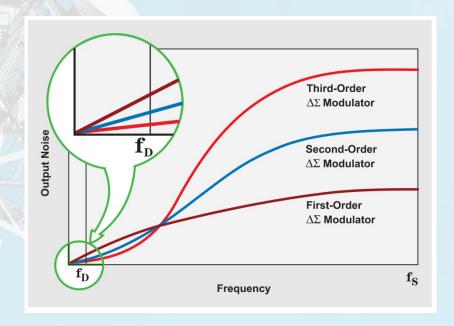
no advantage to $\Sigma\Delta$ here despite oversampling, over-driven ADC

2^{nd} Order $\Sigma\Delta$ ADC



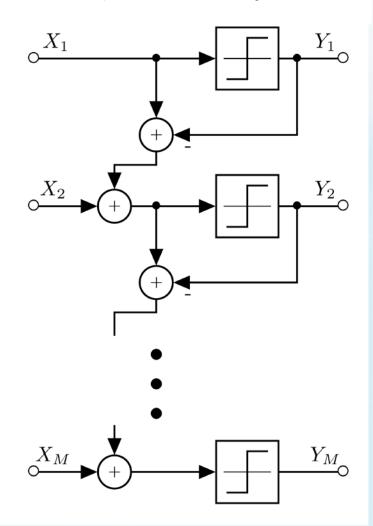
provides further shaping of the quantization noise: $Y = X + Q(1 - z^{-1})^2$

$$Y = X + Q(1 - z^{-1})^{2}$$



Spatial $\Sigma\Delta$ Quantization

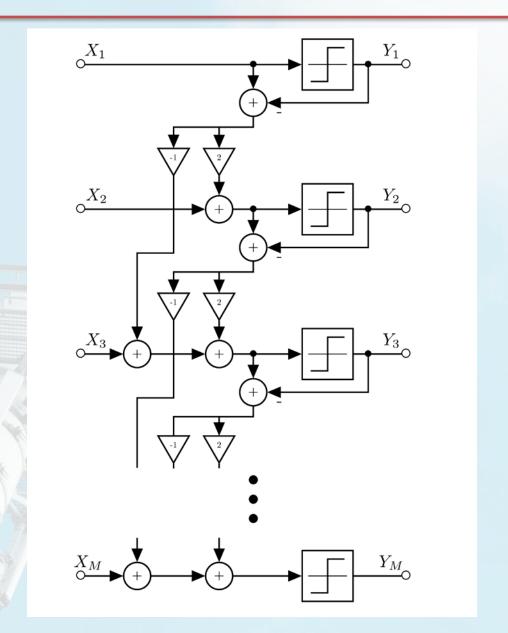
Instead of delayed feedback in time, feedback to adjacent antenna:



Spatial $\Sigma\Delta$ Quantization, cont.

- Oversampling occurs in space rather than time
- For a uniform linear array, this means either antenna spacing less than $\lambda/2$, or sources at low spatial frequencies (nearer to broadside), or both
- Quantization noise is pushed to higher spatial frequencies, so lowpass spatial filtering (beamforming) is needed to reduce impact of quantization
- Second- or higher-order spatial $\Sigma\Delta$ quantization also possible

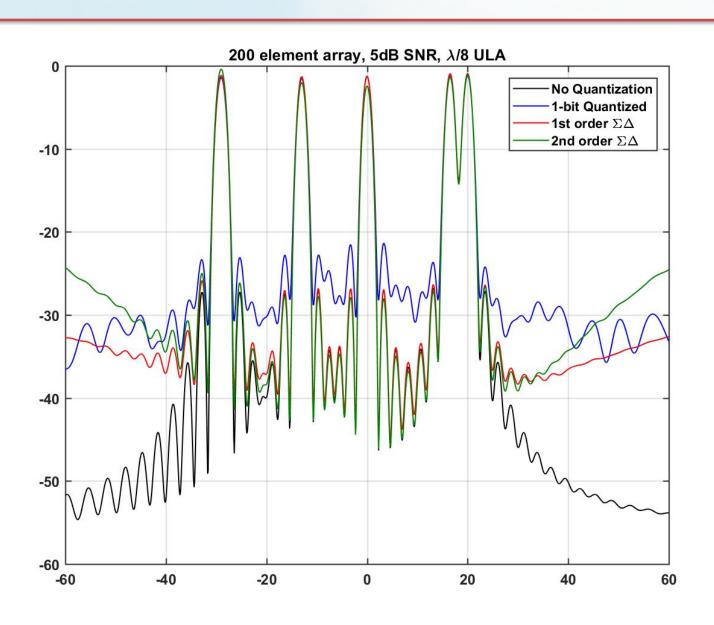
2^{nd} Order Spatial $\Sigma\Delta$ ADC Architecture



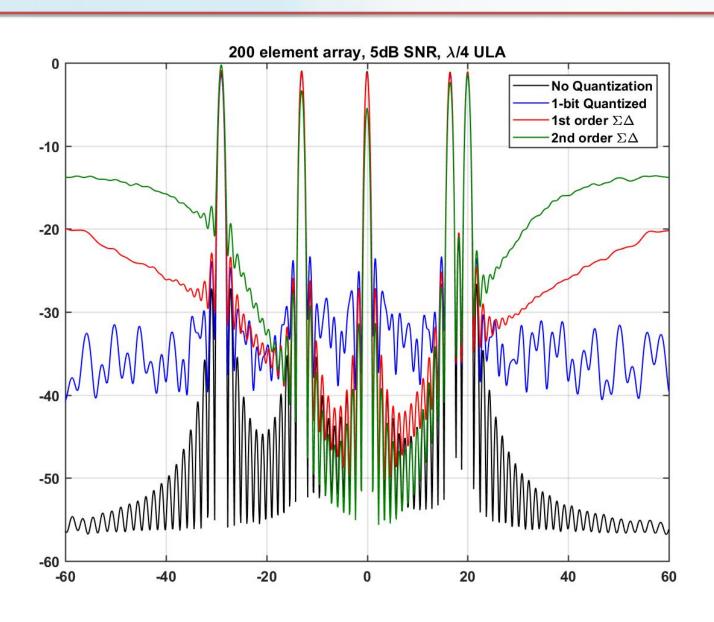
Spatial $\Sigma\Delta$ Quantization, Related Prior Work

- C. P. Yeang, G. W. Wornell and L. Zheng, "Oversampling transmit and receive antenna arrays," in *Proc. IEEE ICASSP*, 2010.
- V. Venkateswaran and A. J. van der Veen, "Multichannel $\Sigma\Delta$ ADCs With Integrated Feedback Beamformers to Cancel Interfering Communication Signals," in *IEEE Trans. on Sig. Proc.*, May 2011.
- J. D. Krieger, C. P. Yeang and G. W. Wornell, "Dense Delta-Sigma Phased Arrays," in *IEEE Trans.* Ant. & Prop., April 2013.
- R. M. Corey and A. C. Singer, "Spatial Sigma-Delta Signal Acquisition for Wideband Beamforming Arrays," in *Proc. 20th International ITG Workshop on Smart Antennas (WSA)*, 2016.
- D. Barac and E. Lindqvist, Spatial ΣΔ Modulation in a Massive MIMO Cellular System, MS Thesis, Dept. of Computer Sci. & Eng., Chalmers University of Technology & University of Gothenburg, 2016.
- D. S. Palguna, D. J. Love, T. A. Thomas and A. Ghosh, "Millimeter Wave Receiver Design Using Low Precision Quantization and Parallel $\Delta\Sigma$ Architecture," in *IEEE Trans. Wireless Comm.*, Oct. 2016.
- A. Nikoofard et al., "Low-complexity N-port ADCs using 2-D $\Delta\Sigma$ noise-shaping for N-element array receivers," in *Proc. 60th IEEE Int'l Midwest Symp. on Circuits and Systems (MWSCAS)*, 2017.
- A. Madanayake, N. Akram, S. Mandal, J. Liang and L. Belostotski, "Improving ADC figure-of-merit in wideband antenna array receivers using multidimensional space-time delta-sigma multiport circuits," In *Proc.* 10th Int'l Workshop on Multidimensional (nD) Systems (nDS), 2017.

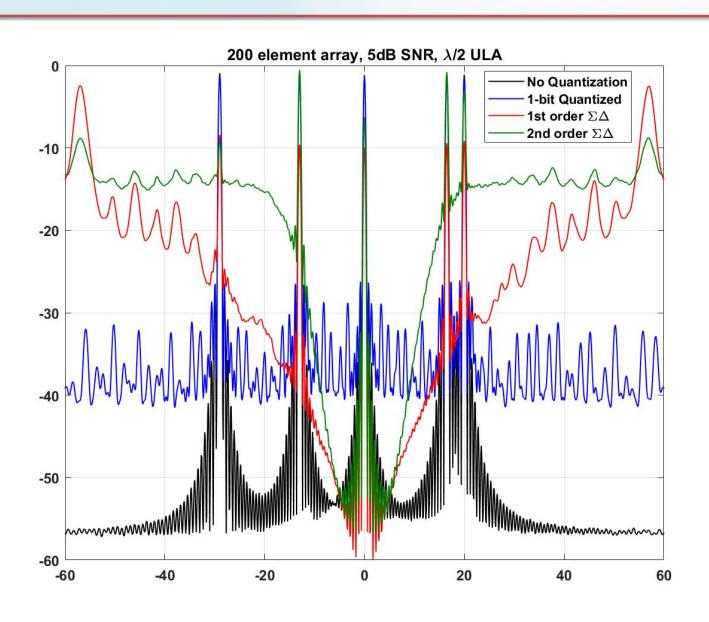
Sample Beampatterns Obtained with Spatial $\Sigma\Delta$ ADCs



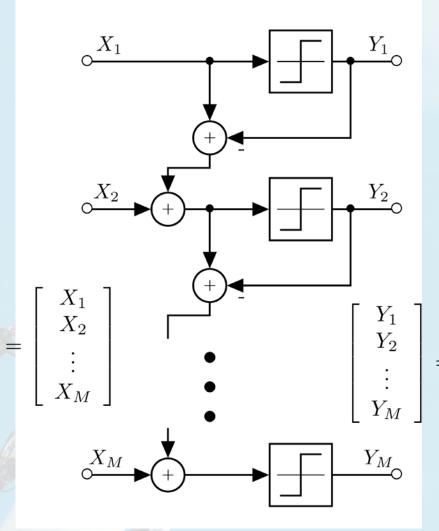
Sample Beampatterns Obtained with Spatial $\Sigma\Delta$ ADCs



Sample Beampatterns Obtained with Spatial $\Sigma\Delta$ ADCs



Channel Estimation



Use $K \times \tau$ uplink training data Φ_t

$$\mathbf{X} = \sqrt{\rho} \mathbf{H} \mathbf{\Phi}_t + \mathbf{N}$$

Vectorized model

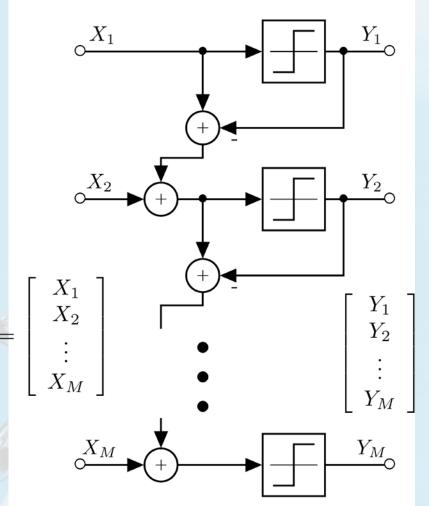
$$\mathbf{x} = \text{vec}(\mathbf{X})$$

$$= \sqrt{\rho} \left(\mathbf{\Phi}_t^T \otimes \mathbf{I} \right) \text{vec}(\mathbf{H}) + \text{vec}(\mathbf{N})$$

$$= \mathbf{\Phi} \mathbf{h} + \mathbf{n}$$

$$=\mathbf{y}=\mathcal{S}_{\Delta}(\mathbf{x})$$

Channel Estimation



Use $K \times \tau$ uplink training data Φ_t

$$\mathbf{X} = \sqrt{\rho} \mathbf{H} \mathbf{\Phi}_t + \mathbf{N}$$

Vectorized model

$$\mathbf{x} = \text{vec}(\mathbf{X})$$

$$= \sqrt{\rho} \left(\mathbf{\Phi}_t^T \otimes \mathbf{I} \right) \text{vec}(\mathbf{H}) + \text{vec}(\mathbf{N})$$

$$= \mathbf{\Phi} \mathbf{h} + \mathbf{n}$$

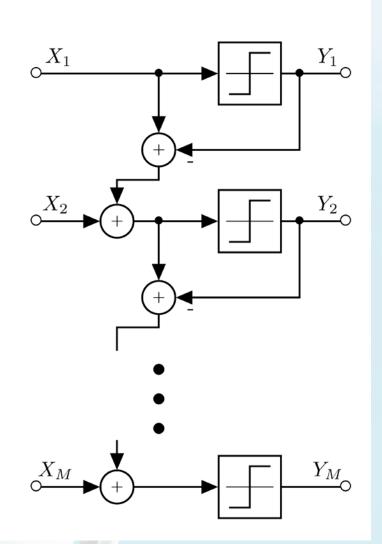
$$=\mathbf{y}=\mathcal{S}_{\Delta}(\mathbf{x})$$

LPF array output

$$\mathbf{r} = \mathbf{G}\mathbf{y}$$

$$M' \times M, M' < M$$

Bussgang Analysis



$$\mathbf{y} = \mathcal{S}_{\Delta}(\mathbf{x}) = \mathcal{Q}\left(\mathbf{U}\mathbf{x} - (\mathbf{\underline{U}} - \mathbf{I})\mathbf{y}\right)$$

$$\Gamma$$

for first-order $\Sigma \Delta$:

$$\mathbf{U} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & 0 & & & 0 \\ 1 & 1 & 1 & 0 & & & 0 \\ & & & & \vdots & & \\ 1 & 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

for second-order $\Sigma \Delta$:

$$\mathbf{U} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 3 & 2 & 1 & 0 & 0 \\ & & & \vdots & & \vdots \\ M & M-1 & M-2 & M-3 & \cdots & 1 \end{bmatrix}$$

Bussgang LMMSE Channel Estimate

$$\mathbf{y} = \mathcal{Q} \left(\mathbf{U} \mathbf{x} - \mathbf{\Gamma} \mathbf{y} \right)$$

$$= \mathbf{A} \left(\underbrace{\mathbf{U} \mathbf{x} - \mathbf{\Gamma} \mathbf{y}}_{\mathbf{z}} \right) + \mathbf{q}$$

$$= \left(\mathbf{I} + \mathbf{A} \mathbf{\Gamma} \right)^{-1} \mathbf{A} \mathbf{U} \mathbf{x} + \left(\mathbf{I} + \mathbf{A} \mathbf{\Gamma} \right)^{-1} \mathbf{q}$$

$$\mathbf{C}_z = \mathbf{U}\mathbf{C}_x\mathbf{U}^H + \mathbf{\Gamma}\mathbf{C}_y\mathbf{\Gamma}^H - \mathbf{U}\mathbf{C}_x\mathbf{U}^H\mathbf{A}^H(\mathbf{I} + \mathbf{\Gamma}^H\mathbf{A}^H)^{-1}\mathbf{\Gamma}^H - \mathbf{\Gamma}(\mathbf{I} + \mathbf{A}\mathbf{\Gamma})^{-1}\mathbf{A}\mathbf{U}\mathbf{C}_x\mathbf{U}^H$$

$$\mathbf{C}_{y} = \frac{2}{\pi} \left(\arcsin \left(\frac{\pi}{2} \mathbf{A} \operatorname{Re}(\mathbf{C}_{z}) \mathbf{A}^{H} \right) + j \arcsin \left(\frac{\pi}{2} \mathbf{A} \operatorname{Im}(\mathbf{C}_{z}) \mathbf{A}^{H} \right) \right)$$

- 1. Calculate $C_z(1,1)$
- 2. From $C_z(1,1)$, find $C_z(1,2)$, $C_z(2,1)$
- 3. Use $C_z(1,2)$, $C_z(2,1)$ to determine $C_z(2,2)$
- 4. Calculate $C_z(1,3), C_z(2,3), C_z(3,3)$ using previous values
- 5. etc.

Bussgang LMMSE Channel Estimate

$$\mathbf{y} = \mathcal{Q} (\mathbf{U}\mathbf{x} - \mathbf{\Gamma}\mathbf{y})$$

$$= \mathbf{A} (\mathbf{U}\mathbf{x} - \mathbf{\Gamma}\mathbf{y}) + \mathbf{q}$$

$$= (\mathbf{I} + \mathbf{A}\mathbf{\Gamma})^{-1} \mathbf{A}\mathbf{U}\mathbf{x} + (\mathbf{I} + \mathbf{A}\mathbf{\Gamma})^{-1} \mathbf{q}$$

$$\mathbf{A} = \sqrt{\frac{2}{\pi}} \operatorname{diag} (\mathbf{C}_z)^{-\frac{1}{2}}$$

$$\mathbf{C}_z = \mathbf{U}\mathbf{C}_x\mathbf{U}^H + \mathbf{\Gamma}\mathbf{C}_y\mathbf{\Gamma}^H - \mathbf{U}\mathbf{C}_x\mathbf{U}^H\mathbf{A}^H(\mathbf{I} + \mathbf{\Gamma}^H\mathbf{A}^H)^{-1}\mathbf{\Gamma}^H - \mathbf{\Gamma}(\mathbf{I} + \mathbf{A}\mathbf{\Gamma})^{-1}\mathbf{A}\mathbf{U}\mathbf{C}_x\mathbf{U}^H$$

$$\mathbf{C}_{y} = \frac{2}{\pi} \left(\arcsin \left(\frac{\pi}{2} \mathbf{A} \operatorname{Re}(\mathbf{C}_{z}) \mathbf{A}^{H} \right) + j \arcsin \left(\frac{\pi}{2} \mathbf{A} \operatorname{Im}(\mathbf{C}_{z}) \mathbf{A}^{H} \right) \right)$$

$$\hat{\mathbf{h}} = \mathbf{C}_{hr} \mathbf{C}_{rr}^{-1} \mathbf{r}$$

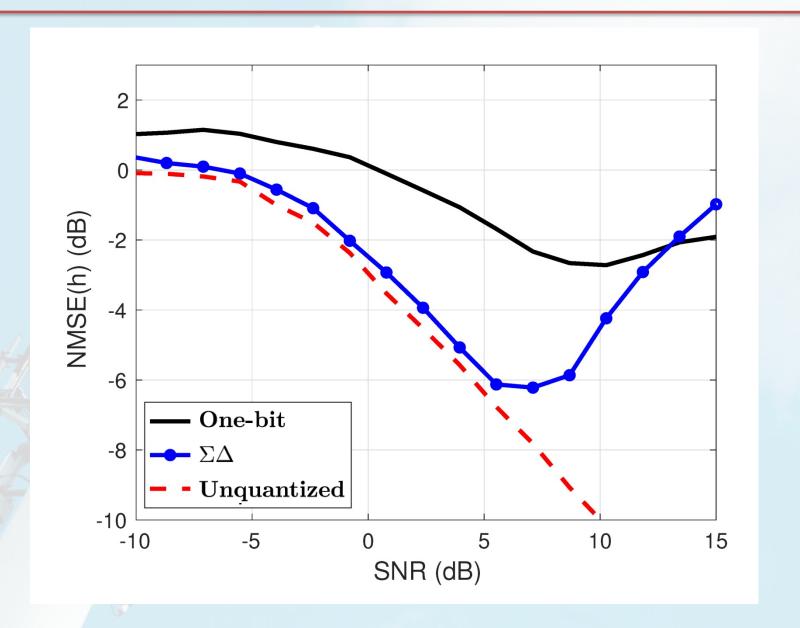
$$= \mathbf{C}_{hy} \mathbf{G}^H (\mathbf{G} \mathbf{C}_y \mathbf{G})^{-1} \mathbf{G} \mathbf{y}$$

$$\mathbf{C}_{hy} = \mathbf{C}_h \mathbf{\Phi}^H \mathbf{U}^H \mathbf{A}^H (\mathbf{I} + \mathbf{\Gamma}^H \mathbf{A}^H)^{-1}$$

Uplink Simulation with Channel Estimation

- 64 antenna ULA with $\lambda/8$ element spacing
- 8 LoS users with random angles uniformly distributed in $[-30^{\circ}, 30^{c} irc]$
- Array output processed with 16-tap low-pass beamformer with cutoff at $\pm 45^{\circ}$
- Channel estimated using orthogonal pilots of duration 8 samples
- Estimated channels used in ZF receiver to decode subsequent QPSK symbols

Uplink Simulation with Channel Estimation



Conclusions

- Massive MIMO, small cells and mm-wave frequencies provide symbionic benefits for 5G
- Low-resolution (e.g., 1-bit) quantization provides high spectral efficiency and significant energy savings
- One-bit $\Sigma\Delta$ ADC architectures provide gains in situations where users have low spatial frequencies (bigger gains likely for higher-dimensional constellations, e.g., 16-QAM)
- Realistic system simulations show 2-4 bit ADCs yield best energy-spectral efficiency trade-off