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The Road to Gigabit Wireless (5G and Beyond)

Capacity

Three symbiotic trends emerging:

e Deployment of pico- and femto-cells (OoM decrease in cell size)
e Millimeter wave frequencies (OoM increase in bandwidth)

e Massive MIMO (OoM increase in antennas)
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A New Focus: Small Cells A
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A Symbiotic Relationship

e Millimeter wave frequencies

— short wavelengths

— larger propagation losses, shorter range operation
— little multipath, line-of-sight (LOS) or near-LOS
— low SNR

— larger Doppler shifts, more sensitive to mobility

e Massive antenna arrays e Small cells
— large array gain — short range
— size proportional to wavelength — lower power
— narrow, focused beamforming — low mobility

— interference-limited



Energy Efficiency in Massive MIMO
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e Energy efficiency and hardware complexity are important issues for massive
MISO/MIMO systems

e Use low fidelity hardware (e.g., one-bit ADCs/DACSs) to minimize power
consumption, low PAPR waveforms to (1) lower OOB interference and
spectral regrowth and (2) allow PAs to operate with no back-off



Standard Receiver Implementation
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e Full precision ADC requires linear, low-noise amplifiers and AGC

e ADC power consumption grows exponentially with resolution

e A commercial TT 1 Gs/s 12-bit ADC requires as much as 2-4W

e 1 GHz bandwidth, 128 antennas, 12 bit ADC — over 6 Th/sec into DSP

e Not practical for ideal massive MIMO



A One-Bit Receiver
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e One-bit ADC = simple RF, no AGC or high cost LNA
e Operates at a fraction of the power (mW)

e Compensate for quantization error with signal processing, more antennas



Single Antenna Theoretical Analysis
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Nonlinear Analysis: The Bussgang Decomposition

Consider a Gaussian signal that passes through a non-linear operator:
r = Q(x)

Bussgang (Bell Labs, 1952) showed that a statistically “equivalent” (up to
second order) linear model exists for the non-linearity

r=0(x)=Ax+q

that results in the error q (here the quantization noise) and the signal x
being uncorrelated, namely

A = E{xr}&{xxT}1

Linear model that best describes the quantization:

A = arg mjin r — Ax||?



Channel Estimation using Linear Model
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Sum Spectral Efficiency

e K = 8 users

e equal power 30 . | l l . .

e coherence
interval 1" = 200 25 -
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Sum Spectral Efficiency vs. # of Antennas
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Alternative ADC Architecture: Oversampling with XA ADCs

e Oversampling makes desired signal temporally correlated
e Exploit temporal correlation via feedback, quantization of the error signal

e Requires simple additional analog circuitry

Difference

f
Analog Amplifier Integrator S
Input
Output to

_Digital Filter

i

VRrerF & Comparator

(1-Bit ADC)
X4 y /VI

1-Bit DAC \
I Yi=Xj_p+(e;—e;_q)

*From Texas Instruments Analog Applications Journal



Oversampling with A ADCs

e Desired signal pushed to lower frequencies due to oversampling, quantization
noise pushed to higher frequencies (noise shaping)

e post-processing low-pass filter and decimation used to recover desired
samples
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2A ADC Discrete-Time Equivalent Model

model quantizer as additive noise term Q:




A ADC Discrete-Time Equivalent Model, pt. 2
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Unlike 1-Bit ADC, 2A ADCs Need Gain Control

2r Original signal
— X-A quantized
— 1-bit quantized
1.5} Filtered X-A
= = = = Filtered 1-bit

-1.5
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no advantage to XA here despite oversampling, over-driven ADC



2"d Order XA ADC

provides further shaping of the quantization noise: Y=X+Q (1 — z_1)2
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Spatial 2A Quantization

Instead of delayed feedback in time, feedback to adjacent antenna:
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Spatial 2A Quantization, cont.

Oversampling occurs in space rather than time

For a uniform linear array, this means either antenna spacing less than \/2,
or sources at low spatial frequencies (nearer to broadside), or both

Quantization noise is pushed to higher spatial frequencies, so lowpass spatial
filtering (beamforming) is needed to reduce impact of quantization

Second- or higher-order spatial XA quantization also possible



2"d Order Spatial ZA ADC Architecture
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Sample Beampatterns Obtained with Spatial A ADCs

200 element array, 5dB SNR, A\/8 ULA
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Sample Beampatterns Obtained with Spatial A ADCs

200 element array, 5dB SNR, \/4 ULA
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Sample Beampatterns Obtained with Spatial A ADCs

200 element array, 5dB SNR, A/2 ULA
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Channel Estimation

Use K x 7 uplink training data P,

Y) X = /pH®, + N

Vectorized model

x = vec(X)
Ygo 7 (@? ® I) vec(H) + vec(N)
=®h+n
C
X = , Ys
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Channel Estimation

Use K x 7 uplink training data P,

Y) X = /pH®, + N

Vectorized model

x = vec(X)
Ygo 7 (@? ® I) vec(H) + vec(N)
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Bussgang Analysis

y =8a(x) = 2(Ux— (U-1Dy)
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for first-order X A:
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Bussgang LMMSE Channel Estimate

y = Q(Ux—Ty) ) |
= A(Ux—-Ty)+q A = \/7diag (C,) 2
S~~~ @
z

— (I+AT') 'AUx+ (I+AI') ' g

C.=Uuc,u” +rc,r” —uc, UPAR I+ T7AH)-'T" —T(1+ AD)'AUC, U

2
C, == (arcsin (gARe(CZ)AH> + jarcsin (gAIm(CZ)AH))

i

1. Calculate C,(1,1)

2. From C,(1,1), find C,(1,2),C.(2,1)

3. Use C,(1,2),C.(2,1) to determine C,(2,2)

4. Calculate C,(1,3),C,(2,3),C.(3,3) using previous values

5. etc.



Bussgang LMMSE Channel Estimate

y = Q(Ux - Ty) - |
= A(Ux—-Ty)+q A = \/jdiag (C,) 2
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2
C, = A (arcsin (gARe(CZ)AH) + jarcsin (gAIm(Cz)AH))
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Uplink Simulation with Channel Estimation

e 64 antenna ULA with \/8 element spacing

e 8 LoS users with random angles uniformly distributed in [—30°, 30%rc]

e Array output processed with 16-tap low-pass beamformer with cutoff at
+45°

e Channel estimated using orthogonal pilots of duration 8 samples

e Estimated channels used in ZF receiver to decode subsequent QPSK symbols



Uplink Simulation with Channel Estimation
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Conclusions

e Massive MIMO, small cells and mm-wave frequencies provide symbionic

benefits for 5G

e Low-resolution (e.g., 1-bit) quantization provides high spectral efficiency and
significant energy savings

e One-bit XA ADC architectures provide gains in situations where users have
low spatial frequencies (bigger gains likely for higher-dimensional
constellations, e.g., 16-QAM)

e Realistic system simulations show 2-4 bit ADCs yield best energy-spectral
efficiency trade-oft
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