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Data with missing values

In theory, data is typically assumed complete and algorithms are
designed for complete data.
In practice, however, often data has missing values, due to a
variety of reasons.
Then the algorithms designed for complete data can be disastrous!
Missing values typically happen during the data observation or
recording process:1

values may not be measured,
values may be measured but get lost, or
values may be measured but are considered unusable.

1R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data, 2nd Ed.
Hoboken, N.J.: John Wiley & Sons, 2002.
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Data with missing values

Some real-world cases where missing values occur:
some stocks may suffer a lack of liquidity resulting in no transaction
and hence no price recorded
observation devices like sensors may break down during the
measurement
weather or other conditions may disturb sample taking schemes
in industrial experiments some results may be missing because of
mechanical breakdowns unrelated to the experimental process
in an opinion survey some individuals may be unable to express a
preference for one candidate over another
respondents in a survey may not answer every question
countries may not collect statistics every year
archives may simply be incomplete
subjects may drop out of panels.
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What is imputation?

How can we cope with data with missing values?
One option is to design processing algorithms that can accept missing
values, but has to be done in a case by case basis and is expensive.
Another option is imputation: filling in those missing values based on
some properties of the data. After that, processing algorithms for
complete data can be safely used.
However, magic cannot be done to impute missing values. One has to
rely on some structural properties like some temporal structure.
There are many imputation techniques, many heuristic (can do more
harm than good) and some with a sound statistical foundation.
Many works assume a Gaussian distribution, which doesn’t hold in
many applications.

We will focus on statistically sound methods for time series
imputation under heavy-tailed distributions.
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Netflix problem: Low-rank matrix completion

In big data system analytics, it is often the case that the
high-dimensional data matrix lies in a low-dimensional subspace.
A popular example is the Netflix problem where the data matrix
contains movie ratings by users and is extremely sparse:

Movies

X =


2 3 ? ? 5 ?
1 ? ? 4 ? 3
? ? 3 2 ? 5
4 ? 3 ? 2 4

 Users

In 2009, the Netflix prize of US$1M was awarded to a method based,
among other techniques, on the low-rank property:

X = ABT

where both A and B are extremely thin matrices.
This low-rank property can be used to impute missing values.
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Inpainting in image processing

In image processing, a popular problem is that of images with missing
blocks of pixels:

In this case, one can use the natural structure of images, e.g., small
gradient or a dictionary of small structures commonly appearing.
Total variation is a common technique that imputes the missing
pixels by ensuring a small ℓ1-norm of the gradient.
Learning an overcomplete dictionary allows for imputing blocks of
pixels based on the dictionary.
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Frugal sensing and compressive covariance sensing

A somehow related problem in signal processing and wireless
communications is frugal sensing and compressive covariance sensing
where one wants to obtain the complete knowledge of a covariance
matrix.
In frugal sensing,2 one wants to obtain the matrix X from knowledge
of the value of some cuts cT

i Xci = vi or even just one bit of
information of the cuts cT

i Xci ≶ t.
More generally, in compressive covariance sensing,3 one wants to
reconstruct X from the smaller matrix CTXC, where C is some tall
compression or selection matrix that exploits structural information or
sparsity in some domain.

2O. Mehanna and N. Sidiropoulos, “Frugal sensing: Wideband power spectrum
sensing from few bits,” IEEE Trans. on Signal Processing, vol. 61, no. 10,
pp. 2693–2703, 2013.

3D. Romero, D. D. Ariananda, Z. Tian, and G. Leus, “Compressive covariance
sensing: Structure-based compressive sensing beyond sparsity,” IEEE Signal Processing
Magazine, vol. 33, no. 1, pp. 78–93, 2016.
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Time series with structure
In some applications, one of the dimensions of the data matrix is time.
The time dimension sometimes has some specific structure on the
distribution of the missing values, like the monotone missing pattern.4
The time dimension can also follow some structural model that can
be effectively used to fill in the missing values.
One simple example of time structure is the random walk, which is
pervasive in financial applications (e.g., log-returns of stocks):5

yt = ϕ0 + yt−1 + εt.

Another example of time structure is the AR(p) model (e.g.,
traded log-volume of stocks):

yt = ϕ0 +
p∑

i=1
ϕiyt−i + εt.

4J. Liu and D. P. Palomar, “Robust estimation of mean and covariance matrix for
incomplete data in financial applications,” in Proc. IEEE GlobalSIP, Montreal, Canada,
2017.

5J. Liu, S. Kumar, and D. P. Palomar, “Parameter estimation of heavy-tailed random
walk model from incomplete data,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Calgary, Alberta, Canada, 2018.
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Simple imputation methods

Some simple and naive approaches for imputation are:

hot deck imputation: recorded units in the sample are used to
substitute values
mean imputation: means from sets of recorded values are
substituted

sounds like a good idea but it distorts the empirical distribution
of the sampled values (biases in variances and covariances)

y1, y2, . . . , yk1,NA1, . . . ,NAk2 → σ̂2 = 1
k1

k1∑
i=1

(yi − µ̂)2

y1, y2, . . . , yk1, µ̂, . . . , µ̂→ σ̂2 = 1
k1 + k2

( k1∑
i=1

(yi − µ̂)2 +
k2∑

i=1
0
)
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Naive vs sound imputation methods

Ad-hoc methods of imputation can lead to serious biases in variances
and covariances.
Examples are:

mean imputation
constant interpolation
linear interpolation
polynomial interpolation
spline interpolation

A sound imputation method should preserve the statistics of the
observed values.

The statistical way is to first estimate the distribution of the
missing values conditional on the observed values f (ymiss|yobs)
and then impute based on that posterior distribution.
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Naive vs sound time series imputation methods
Illustration of different naive imputation methods and a sound statistical
method that preserves the statistics:
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Single and multiple imputation

Suppose we have somehow estimated the conditional distribution
f (ymiss|yobs).
At this point it is trivial to randomly generate the missing values from
that distribution:

ymiss ∼ f (ymiss|yobs).

This only gives you one realization of the missing values.
In some applications, one would like to have multiple realizations of
the missing values to properly test the performance of some
subsequent methods or algorithms.
Multiple imputation (MI) consists of generating multiple realizations
of the missing values:

y(k)
miss ∼ f (ymiss|yobs) ∀k = 1, . . . ,K.
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Estimation of parameters for iid Gaussian

Suppose a univariate random variable y follows a Gaussian
distribution:

y ∼ N
(
µ, σ2

)
.

We have T incomplete samples {yt} and the missing mechanism is
ignorable (aka MAR), the ML estimation problem is formulated as

maximize
µ,σ2

log
(∏

t∈Cobs fG
(
yt;µ, σ2))

,

where Cobs is the set of the indexes of the observed samples, and
fG (·) is the pdf of the Gaussian distribution.
Closed-form solution:

µ̂ = 1
nobs

∑
t∈Cobs

yt

and
σ̂2 = 1

nobs

∑
t∈Cobs

(yt − µ̂)2 .
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Estimation of parameters for iid Student’s t
In many applications, the Gaussian distribution is not appropriate
and a more realistic heavy-tailed distribution is necessary.
An example is in the financial returns of stocks:
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Estimation of parameters for iid Student’s t
The Student’s t-distribution is a widely used heavy-tailed distribution.
Suppose y follows a Student’s t-distribution: y ∼ t

(
µ, σ2, ν

)
with pdf

ft
(
y;µ, σ2, ν

)
=

Γ
(

ν+1
2

)
√
νπσΓ

(
ν
2
) (1 + (y− µ)2

νσ2

)
.

Given the incomplete data set, the ML estimation problem for
θ =

(
µ, σ2, ν

)
can be formulated as

maximize
µ,σ2,ν

log
(∏

t∈Cobs ft
(
yt;µ, σ2, ν

))
.

No closed-form solution.
Interestingly, the Student’s t-distribution can be represented as a
Gaussian mixture:

yt|τt ∼ N
(
µ,
σ2

τt

)
, τt ∼ Gamma

(
ν

2 ,
ν

2

)
,

where τt is the mixture weight.
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Estimation of parameters for iid Student’s t
We can use the expectation-maximization (EM) algorithm to solve this ML
estimation problem by regarding τ obs = {τt}t∈Cobs

as latent variables:

Expectation (E) - step: compute the expected complete data
log-likelihood given the current estimates

Q
(
θ|θ(k)

)
=Ef (τ obs|yobs,θ

(k)) [log (f (yobs, τ obs | θ))]

=−
∑

t∈Cobs

w(k)
t

2σ2 (yt − µ)2 − nobs
2 log

(
σ2
)

+ nobs
ν

2 log
(
ν

2

)

− nobs log
(

Γ
(
ν

2

))
+ ν

2
∑

t∈Cobs

(
δ

(k)
t − w(k)

t
)

+ const.,

where w(k)
t = E [τt] = ν(k)+1

ν(k)+(yt−µ(k))2
/(σ(k))2 ,

δ
(k)
t = E [log (τt)] = ψ

(
ν(k)+1

2

)
− log

(
ν(k)+(yt−µ(k))2

/(σ(k))2

2

)
.
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Estimation of parameters for iid Student’s t

Maximization (M) - step: update the estimates as

θ(k+1) = argmax
θ

Q
(
θ|θ(k)

)
and has closed-form solution:

µ(k+1) =
∑

t∈Cobs w(k)
t yt∑

t∈Cobs w(k)
t

,

(
σ(k+1)

)2
=
∑

t∈Cobs w(k)
t
(
yt − µ(k+1)

)2

nobs
,

ν(k+1) = argmax
ν>0

nobs

(
ν

2 log
(
ν

2

)
− log

(
Γ
(
ν

2

)))
+ ν

2
∑

t∈Cobs

(
δ

(k)
t − w(k)

t
)
.
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Algorithm
Stochastic EM algorithm for iid Student’s t:

Initialize µ(0),
(
σ(0)

)2
, and ν(0). Set k = 0.

repeat

w(k)
t = ν(k) + 1

ν(k) +
(
yt − µ(k))2 / (σ(k))2 ,

µ(k+1) =
∑

t∈Cobs w(k)
t yt∑

t∈Cobs w(k)
t

,

(
σ(k+1)

)2
=
∑

t∈Cobs w(k)
t
(
yt − µ(k+1)

)2

nobs
,

ν(k+1) = argmax
ν>0

Q
(
µ(k+1),

(
σ(k+1)

)2
, ν|µk,

(
σk
)2
, νk
)

k← k + 1
until convergence
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Estimation of parameters for AR(1) Student’s t

Consider an AR(1) time series with innovations following a Student’s
t-distribution:

yt = φ0 + φ1yt−1 + εt,

where εt ∼ t
(
0, σ2, ν

)
.

The ML estimation problem for θ =
(
φ0, φ1, σ2, ν

)
is formulated as

maximize
ϕ0,φ1,σ2,ν

log
(∫ ∏T

t=2 ft
(
yt;φ0 + φ1yt−1, σ2, ν

)
dymiss

)
The objective function involves an integral, and we have no
closed-form expression.
As before, we can represent εt as

εt|τt ∼ N
(

0, σ
2

τt

)
, τt ∼ Gamma

(
ν

2 ,
ν

2

)
,

and use the EM type algorithm to solve this optimization problem by
regarding ymiss and τ = {τt}t=1,...,T as the latent variables.
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Estimation of parameters for AR(1) Student’s t
The complete data log-likelihood f (yobs, ymiss, τ | θ) belongs to the
exponential family:

f (yobs, ymiss, τ | θ)
=h (yobs, ymiss, τ ) exp (−ψ (θ) + ⟨s (yobs, ymiss, τ ) ,ϕ (θ)⟩)

where

h (yobs, ymiss, τ ) =
T∏

t=2
τ

− 1
2

t ,

ψ (θ) = − (T− 1)
{
ν

2 log
(
ν

2

)
−log

(
Γ
(
ν

2

))
−1

2 log
(
σ2
)
−1

2 log (2π)
}
,

s (yobs, ymiss, τ ) =
T∑

t=2

[
log (τt)−τt, τty2

t , τt, τty2
t−1, τtyt, τtytyt−1, τtyt−1

]
,

ϕ (θ) =
[
ν

2 , −
1

2σ2 , −
φ2

0
2σ2 , −

φ2
1

2σ2 ,
φ0
σ2 ,

φ1
σ2 , −

φ0φ1
σ2

]
.
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Estimation of parameters for AR(1) Student’s t

Thus the expected complete data log-likelihood can be expressed as

Q
(
θ|θ(k)

)
=Ef (ymiss,τ |yobs,θ

(k)) [log (f (yobs, ymiss, τ | θ))]

=− ψ (θ) +
⟨
s̄
(
θ(k)

)
,ϕ (θ)

⟩
+ const.,

where s̄
(
θ(k)

)
= Ef (ymiss,τ |yobs,θ

(k)) [s (yobs, ymiss, τ )].

The computation of Q
(
θ|θ(k)

)
is reduced to that of s̄

(
θ(k)

)
.

However, f
(
ymiss, τ | yobs,θ

(k)
)

is very complicated, and we cannot
even obtain s̄

(
θ(k)

)
in closed form.

We can take a stochastic approximation of the expectation but, still,
drawing samples from f

(
ymiss, τ | yobs,θ

(k)
)

is very complicated!
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Estimation of parameters for AR(1) Student’s t

We will use a Markov chain Monte Carlo (MCMC) process.

In particular, we consider the Gibbs sampling method to generate the
Markov chain: we divide the latent variables (ymiss, τ ) into two blocks
τ and ymiss and then generate a Markov chain of samples from the
conditional distributions f

(
τ |ymiss, yobs,θ

(k)
)

and
f
(
ymiss|τ , yobs,θ

(k)
)

alternatively:

Drawing from f
(
τ |ymiss, yobs,θ

(k)
)

is trivial since the elements
of τ are iid following a univariate gamma distribution.

Drawing from f
(
ymiss|τ , yobs,θ

(k)
)

is trivial since it’s just a
Gaussian distribution.
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Algorithm

Stochastic EM algorithm for AR(1) Student’s t:
Initialize latent variables and set k = 0.
repeat

Simulation step: generate the samples
(
τ (k,l), y(k,l)

m
)

(l = 1, 2 . . . , L)

from f
(
ymiss, τ |yobs; θ(k)

)
via Gibbs sampling (L parallel chains).

Approximation step:

ŝ(k) = ŝ(k−1) + γ(k)
(

1
L

L∑
l=1

s
(
yobs, y(k,l)

miss, τ
(k,l)
)
− ŝ(k−1)

)
.

Maximization step: θ(k+1) = argmax
θ

Q̂
(
θ, ŝ(k)

)
.

k← k + 1
until convergence
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Maximization step

The maximization step θ(k+1) = argmax
θ

Q̂
(
θ, ŝ(k)

)
can be obtained in

closed form:

φ
(k+1)
0 = ŝ(k)

5 − φ
(k+1)
1 ŝ(k)

7

ŝ(k)
3

,

φ
(k+1)
1 = ŝ(k)

3 ŝ(k)
6 − ŝ(k)

5 ŝ(k)
7

ŝ(k)
3 ŝ(k)

4 −
(
ŝ(k)
7
)2 ,

(
σ(k+1)

)2
= 1

T− 1

(
ŝ(k)
2 +

(
φ

(k+1)
0

)2
ŝ(k)
3 +

(
φ

(k+1)
1

)2
ŝ(k)
4

− 2φ(k+1)
0 ŝ(k)

5 − 2φ(k+1)
1 ŝ(k)

6 + 2φ(k+1)
0 φ

(k+1)
1 ŝ(k)

7

)
,

ν(k+1) = arg max
ν>0

(T− 1)
{
ν

2 log
(
ν

2

)
− log

(
Γ
(
ν

2

))}
+ ν ŝ(k)

1
2 .
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Convergence

The previous algorithm is very simple but does it converge?

Theorem:

The sequence
{

θ(k)
}

generated by the algorithm has the following
asymptotic property: with probability 1, limk→+∞ d

(
θ(k),L

)
= 0, where

d
(
θ(k),L

)
denotes the distance from θ(k) to the set of stationary points

of observed data log-likelihood L =
{

θ ∈ Θ, ∂l(θ;yobs)
∂θ = 0

}
.a

aJ. Liu, S. Kumar, and D. P. Palomar, “Parameter estimation of heavy-tailed
AR model with missing data via stochastic EM,” arXiv preprint, 2018. [Online].
Available: https://arxiv.org/pdf/1809.07203.pdf.
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Step 2: Imputation of missing values

Given the conditional distribution f (ymiss|yobs), it is trivial to
randomly generate the missing values (multiple realizations can be
drawn for multiple imputation):

ymiss ∼ f (ymiss|yobs).
However, in our case, we don’t have the conditional distribution
f (ymiss|yobs) in closed form:

f (ymiss|yobs) =
∫

f (ymiss|yobs,θ)f (θ|yobs)dθ

An improper way of imputing (which is acceptable in many cases with
small percentage of missing values) is with f (ymiss|yobs,θ

ML), but
even that expression is not available.
We can instead draw from f (ymiss, τ |yobs,θ

ML) and discard τ , but
that expression is not available either.

We can generate the samples from the joint based on Markov
chains.
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Step 2: Imputation of missing values

In particular, we consider the Gibbs sampling method to generate the
Markov chain: we divide the latent variables (ymiss, τ ) into two blocks
τ and ymiss and then generate a Markov chain of samples from the
conditional distributions f (τ |ymiss, yobs,θ) and f (ymiss|τ , yobs,θ)
alternatively.

Drawing from f (τ |ymiss, yobs,θ) is trivial since the elements
of τ are iid, so it is just a univariate gamma distribution for each
element.

Drawing from f (ymiss|τ , yobs,θ) is just a Gaussian distribution.

If multiple imputation is needed, then the Markov chain has to be
generated multiple times. But this is not the correct way to do
multiple imputation!

The correct way is via a Bayesian characterization of θ instead
a point estimation like ML.
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Numerical simulations
Estimation of parameters for AR(1) Student’s t with real data (S&P 500):
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Numerical simulations: imputed or real?
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Numerical simulations: imputed or real?
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Summary

We have introduced the issue of missing values in observations.
Imputation is the mechanism by which one fills in those missing
values.
Many methods are ad-hoc with no good statistical results.
Other methods are based on some properly defined formulation based
on some structural properties of the data matrix.
Time series contain special temporal structure that can be employed
for imputation.
Sound statistical method:

1 estimate the statistics of the underlying distribution function and
construct the conditional distribution

2 impute based on the conditional distribution either a single time or
multiple times (multiple imputation)
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Thanks

For more information visit:

https://www.danielppalomar.com
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