Double Contractions of Tensors to Represent Slice-wise Multiplications of Tensors – with Applications to PARAFAC2 and Multi-Carrier MIMO Systems in Wireless Communications

Martin Haardt

Ilmenau University of Technology Communications Research Laboratory 98684 Ilmenau, Germany

E-Mail: Martin.Haardt@tu-ilmenau.de

Homepage: <u>http://www.tu-ilmenau.de/crl</u>

Acknowledgments

Joint work with

- ⇒ Kristina Naskovska, TU Ilmenau
- ⇒ Damir Rakhimov, TU Ilmenau
- ⇒ André de Almeida, Federal University of Ceará (UFC), Fortaleza, Brazil

Motivation

- Slice-wise multiplication of two tensors
 - \Rightarrow is required in a variety of tensor decompositions
 - PARAFAC2
 - PARATUCK2
 - \Rightarrow and is encountered in many applications
 - biomedical data analysis (EEG, MEG, etc.)
 - multi-carrier MIMO systems
 - \Rightarrow provide a new tensor representation
 - that is not based on a slice-wise (matrix) description
 - \Rightarrow can be represented by a **double contraction** of two tensors
 - efficiently calculated via generalized unfoldings
 - leads to new tensor models that do not depend on the chosen unfolding
 - reveal the tensor structure of the data model (constrained CP)

Outline

- Tensor Algebra and Notation
- Computation of Tensor Contractions via Generalized Unfoldings
- Double Contractions of Tensors to Represent Slice-wise Multiplications
 - ⇒ Element-wise Multiplication of Vectors and Matrices using Contraction
 - \Rightarrow Slice-wise Multiplication of Tensors using Contraction
- Constrained CP model of PARAFAC2 derived via Double Contractions
- Applications to Multi-Carrier MIMO Systems in Wireless Communications
 - \Rightarrow Khatri-Rao Coded MIMO OFDM Systems
 - \Rightarrow MIMO OFDM Systems
- Conclusions

Outline

Tensor Algebra and Notation

- Computation of Tensor Contractions via Generalized Unfoldings
- Double Contractions of Tensors to Represent Slice-wise Multiplications
 ⇒ Element-wise Multiplication of Vectors and Matrices using Contraction
 ⇒ Slice-wise Multiplication of Tensors using Contraction
- Constrained CP model of PARAFAC2 derived via Double Contractions
- Applications to Multi-Carrier MIMO Systems in Wireless Communications
 ⇒ Khatri-Rao Coded MIMO OFDM Systems
 ⇒ MIMO OFDM Systems
- Conclusions

Ilmenau University of Technology Communications Research Laboratory

Tensor algebra

Communications Research Laboratory

Tensor algebra

Canonical Polyadic (CP) Decomposition

- Decomposes a given *R*-way array (tensor) into a sum of (the minimum number of) rank-one components
 - ⇒ Canonical Polyadic (CP) decomposition, also known as Parallel Factor (PARAFAC) analysis or Canonical Decomposition (CANDECOMP)

⇒ applications in psychometrics, chemometrics, array signal processing, communications, biomedical signal processing, data mining, image/video processing, etc.

Ilmenau University of Technology Communications Research Laboratory

n-mode unfoldings of a 4-way CP tensor

 \Rightarrow one index in the rows, all others in the columns

Ilmenau University of Technology Communications Research Laboratory

CRL

"Generalized" unfoldings of a 4-way CP tensor

Outline

Tensor Algebra and Notation

Computation of Tensor Contractions via Generalized Unfoldings

- Double Contractions of Tensors to Represent Slice-wise Multiplications
 ⇒ Element-wise Multiplication of Vectors and Matrices using Contraction
 ⇒ Slice-wise Multiplication of Tensors using Contraction
- Constrained CP model of PARAFAC2 derived via Double Contractions
- Applications to Multi-Carrier MIMO Systems in Wireless Communications
 ⇒ Khatri-Rao Coded MIMO OFDM Systems
 ⇒ MIMO OFDM Systems
- Conclusions

Ilmenau University of Technology Communications Research Laboratory

Motivation: Tensor Contraction (1)

Slice-wise multiplication of two tensors is required in many signal processing applications and tensor decompositions, such as

 \Rightarrow PARAFAC2 tensor decomposition

- [H72] R. A. Harshman, PARAFAC2: "Mathematical and technical notes," UCLA Working Papers in Phonetics, vol. 22, pp. 30–47, 1972.
- [K93] H. A. L. Kiers, "An alternating least squares algorithm for PARAFAC2 and three-way DEDICOM," Comput. Stat. Data. An., vol. 16, pp. 103–118, 1993.
- [NCAH18] K. Naskovska, Y. Cheng, A. L. F. de Almeida, and M. Haardt, "Efficient computation of the PARAFAC2 decomposition via generalized tensor contractions," in *Proc. of 52nd Asilomar Conf. on Signals, Systems, and Computers*, Pacific Grove, CA, Oct. 2018.

\Rightarrow data analysis based on the PARAFAC2 tensor decomposition

[WJR+10] M. Weis, D. Jannek, F. Roemer, T. Guenther, M. Haardt, and P. Husar, "Multi-dimensional PARAFAC2 component analysis of multi-channel EEG data including temporal tracking," in *Proc. 32*th Inter. Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Sept. 2010.

[WJG+10] M. Weis, D. Jannek, T. Guenther, P. Husar, F. Roemer, and M. Haardt, "Temporally resolved multiway component analysis of dynamic sources in event-related EEG data using PARAFAC2," in *Proc. 18-th European Signal Processing Conference (EUSIPCO 2010),* pp. 696-700, Aug. 2010.

Ilmenau University of Technology Communications Research Laboratory

Motivation: Tensor Contraction (2)

\Rightarrow PARATUCK2 tensor decomposition

[HL96] R. A. Harshman and M. E. Lundy, Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/CANDECOMP, Psychometrika, vol. 61, pp. 133–154, 1996.

⇒ PARATUCK2 is used to model space-time-frequency tensors for multi-carrier MIMO systems in wireless communication

[AFX13]	A. L. F. de Almeida, G. Favier, and L. R. Ximenes, "Space-time-frequency (STF) MIMO communication systems with blind receiver based on a generalized PARATUCK2 model," <i>IEEE Transactions on Signal Processing</i> , vol. 61, no. 8, pp. 1895, 1909, 2013
	Transactions on Signal Processing, vol. 01, 110. 0, pp. 1095–1909, 2013.
[AF13]	A. L. F. de Almeida and G. Favier, "Unified tensor model for space-frequency spreading-multiplexing
	(SFSM) MIMO communication systems," EURASIP Journal on Advances in Signal Processing, vol.
	48, 2013
[FA14]	G. Favier and A. L. F. de Almeida, "Tensor space-time-frequency coding with semi-blind receivers for
	MIMO wireless communication systems," <i>IEEE Transactions on Signal Processing</i> , vol. 62, no. 22, pp. 5987–6002, 2014.
[NCH+17]	K. Naskovska, S. A. Cheema, M. Haardt, B. Valeev, and Y. Evdokimov, "Iterative GFDM receiver based on the PARATUCK2 tensor decomposition," <i>in Proc. 21-st International ITG Workshop on Smart Antennas</i> , 2017.

Tensor Contraction

"Generalized" unfoldings and Contraction

■ Let us take $\mathcal{A} \in \mathbb{C}^{I \times J \times M \times N}$ and $\mathcal{B} \in \mathbb{C}^{M \times N \times K}$ as an example $\Rightarrow \mathcal{T} = \mathcal{A} \bullet_3^1 \mathcal{B} \in \mathbb{C}^{I \times J \times N \times N \times K}$

"Generalized" unfoldings and Contraction

□ Let us take $A \in \mathbb{C}^{I \times J \times M \times N}$ and $B \in \mathbb{C}^{M \times N \times K}$ as an example

"Generalized" unfoldings and Double Contraction

Communications Research Laboratory

Matrix and *n*-mode Product using Contraction

The matrix product $A \cdot X$ between a matrix $A \in \mathbb{C}^{L \times L}$ and $X \in \mathbb{C}^{L \times K}$ can be expressed as contraction.

 $A \cdot X \iff A \bullet_2^1 X$

 \Rightarrow similar, $A^{\top} \cdot X \iff A \bullet_1^1 X$

The *n*-mode product between a tensor $\mathcal{B} \in \mathbb{C}^{I_1 \times I_2 \times ... I_N}$ and a matrix $X \in \mathbb{C}^{J \times I_n}$ can also be expressed as contraction.

$$\mathcal{T}_{1} = \mathcal{B} \times_{n} X \in \mathbb{C}^{I_{1} \times I_{2} \times \ldots \times I_{n-1} \times \mathcal{J} \times I_{n+1} \times \ldots \times I_{N}}$$

$$\mathcal{T}_{2} = \mathcal{B} \bullet_{n}^{2} X \in \mathbb{C}^{I_{1} \times I_{2} \times \ldots \times I_{n-1} \times I_{n-1} \times \ldots \times I_{N} \times \mathcal{J}}$$

⇒ Both tensors contain the same values, only their dimensions are permuted.

Outline

- Tensor Algebra and Notation
- Computation of Tensor Contractions via Generalized Unfoldings
- Double Contractions of Tensors to Represent Slice-wise Multiplications
 - ⇒ Element-wise Multiplication of Vectors and Matrices using Contraction
 - \Rightarrow Slice-wise Multiplication of Tensors using Contraction
- Constrained CP model of PARAFAC2 derived via Double Contractions
- Applications to Multi-Carrier MIMO Systems in Wireless Communications
 ⇒ Khatri-Rao Coded MIMO OFDM Systems
 ⇒ MIMO OFDM Systems
- Conclusions

Ilmenau University of Technology Communications Research Laboratory

Element-wise Multiplication of Vectors using Contraction

□ Let us define two vectors $a \in \mathbb{C}^{M \times 1}$ and $b \in \mathbb{C}^{M \times 1}$

 \Rightarrow the element-wise multiplication (Schur-Hadamard product)

$$c = a \odot b$$
 or $c_{(m)} = a_{(m)}b_{(m)}$ $\forall m = 1, \dots, M$

 \Rightarrow is equivalent to

$$c = \operatorname{diag}(a) b = \operatorname{diag}(b) a$$

 \Rightarrow using the contraction operator

$$c=\operatorname{diag}\left(a
ight)ullet_{2}^{1}b=\operatorname{diag}\left(b
ight)ullet_{2}^{1}a$$

 \Rightarrow where

diag
$$(a) = D^{(a)} = I_M \diamond a^{\mathsf{T}}$$

(Khatri-Rao product)

diag
$$(b) = D^{(b)} = I_M \diamond b^{\mathsf{T}}$$

Element-wise Multiplication of Matrices using Contraction (1)

■ Next, let us assume two matrices $A \in \mathbb{C}^{M \times N}$ and $B \in \mathbb{C}^{M \times N}$ ⇒ the element-wise multiplication (in two dimensions)

$$C = A \odot B$$
 or $C_{(m,n)} = A_{(m,n)}B_{(m,n)}$ $\forall m = 1, \dots, M, n = 1, \dots, N$

 \Rightarrow using the contraction operator, it is equivalent to

$$C = \mathcal{D}_A \bullet_{2,4}^{1,2} B = \mathcal{D}_B \bullet_{2,4}^{1,2} A$$

$$\mathcal{D}_{A(m,m,n,n)} = A_{(m,n)} \qquad \mathcal{D}_{B(m,m,n,n)} = B_{(m,n)}$$
$$\mathcal{D}_{A} \in \mathbb{C}^{M \times M \times N \times N} \qquad \mathcal{D}_{B} \in \mathbb{C}^{M \times M \times N \times N}$$

 \Rightarrow where

$$[\mathcal{D}_A]_{([1,3],[2,4])} = I_{MN} \diamond \operatorname{vec}(A)^T \qquad \text{(diagonal matrix)}$$
$$[\mathcal{D}_B]_{([1,3],[2,4])} = I_{MN} \diamond \operatorname{vec}(B)^T \qquad \text{(diagonal matrix)}$$

Element-wise Multiplication of Matrices using Contraction (2)

 \Rightarrow or, for the same two matrices $m{A} \in \mathbb{C}^{M imes N}$ and $\ m{B} \in \mathbb{C}^{M imes N}$

$$C = \mathcal{D}^{(A)} \bullet^{1,3}_{2,3} \mathcal{D}^{(B)}$$

$$\mathcal{D}^{(A)}_{(m,m,n)} = A_{(m,n)} \qquad \mathcal{D}^{(B)}_{(m,n,n)} = B_{(m,n)}$$

$$\mathcal{D}^{(A)} = \mathcal{I}_{3,M} \times_3 A^T \in \mathbb{C}^{M \times M \times N} \qquad \mathcal{D}^{(B)} = \mathcal{I}_{3,N} \times_1 B \in \mathbb{C}^{M \times N \times N}$$
where
$$\left[\mathcal{D}^{(A)}\right]_{([3,2],[1])} = I_M \diamond A^T \qquad \left[\mathcal{D}^{(B)}\right]_{([1,3],[2])} = I_N \diamond B$$

Slice-wise Multiplication using Contraction (1)

□ A slice wise multiplication of two tensors $A \in \mathbb{C}^{M \times N \times K}$ and $B \in \mathbb{C}^{N \times J \times K}$

□ is also equal to

$$\mathcal{T} = \mathcal{A} \bullet_{2,3}^{1,4} \mathcal{D}_B \in \mathbb{C}^{M \times J \times K},$$
$$[\mathcal{D}_B]_{([1,2,4],[3])} = I_K \diamond [\mathcal{B}]_{([1,2],[3])}$$

$$\boldsymbol{\mathcal{D}}_B \in \mathbb{C}^{N \times J \times K \times K}$$

Slice-wise Multiplication using Contraction (2)

□ A slice wise multiplication of two tensors $A \in \mathbb{C}^{M \times N \times K}$ and $B \in \mathbb{C}^{N \times J \times K}$

$$\mathcal{T}_{(.,.,k)} = \mathcal{A}_{(.,.,k)} \mathcal{B}_{(.,.,k)} \quad \forall k = 1, \dots, K$$

is also equal to

$$\mathcal{T} = \mathcal{A} \bullet_{2,3}^{1,4} \mathcal{D}_B \in \mathbb{C}^{M \times J \times K},$$

 $[\mathcal{D}_B]_{([1,2,4],[3])} = I_K \diamond [\mathcal{B}]_{([1,2],[3])} \qquad \mathcal{D}_B \in \mathbb{C}^{N \times J \times K \times K}$

■ Further combination are also possible leading to the same result, such as $\Rightarrow \mathcal{T}_1 = \mathcal{D}_B \bullet_{1,4}^{2,3} \mathcal{A} \in \mathbb{C}^{J \times K \times M}$

$$\Rightarrow \text{ or, } \mathcal{T}_2 = \mathcal{D}_A \bullet_{2,4}^{1,3} \mathcal{B} \in \mathbb{C}^{M \times K \times J} \text{ with } [\mathcal{D}_A]_{([1,2,4],[3])} = I_K \diamond [\mathcal{A}]_{([1,2],[3])}$$
$$\mathcal{D}_A \in \mathbb{C}^{M \times N \times K \times K}$$

 \Rightarrow however, the ordering of the dimensions is permuted

Outline

- Tensor Algebra and Notation
- Computation of Tensor Contractions via Generalized Unfoldings
- Double Contractions of Tensors to Represent Slice-wise Multiplications
 - ⇒ Element-wise Multiplication of Vectors and Matrices using Contraction
 - \Rightarrow Slice-wise Multiplication of Tensors using Contraction
- Constrained CP model of PARAFAC2 derived via Double Contractions
- Applications to Multi-Carrier MIMO Systems in Wireless Communications
 ⇒ Khatri-Rao Coded MIMO OFDM Systems
 ⇒ MIMO OFDM Systems
- Conclusions

Computation of the PARAFAC2 decomposition

PARAFAC2 was proposed in

[H72] R.A. Harshman, "PARAFAC2: Mathematical and technical notes," *CLA Working Papers in Phonetics* (University Microfilms, Ann Arbor, Michigan, No. 10,085), vol. 22, pp. 30-44, 1972.

The computation is based on ALS (Alternating Least Squares)
 ⇒ indirect fitting approach (via PARATUCK2)

[K93] H. A. L. Kiers, "An alternating least squares algorithm for PARAFAC2 and three-way DEDICOM," in *Computational Statistics & Data Analysis* vol. 16, number 1, pp. 103–118, 1993.

⇒ direct fitting approach with two loops

- outer loop Orthogonal Procrustes Problem (OPP)
- inner loop ALS

[KBB99] H. A. L. Kiers, J. M. F. T. Berge, and R. Bro, "PARAFAC2 - Part I. A direct fitting algorithm for the PARAFAC2 model," in *J. Chemometrics* vol.13, no. 3, issue 4, pp. 275–294, 1999.

 \Rightarrow also another direct fitting approach with two loops

- outer loop Orthogonal Procrustes Problem (OPP)
- inner loop Simultaneous Matrix Diagonalization (SMD)

PARAFAC2 decomposition

The PARAFAC2 decomposition can be seen as coupled matrix decomposition, coupled in one mode

$$\boldsymbol{X}_{k} = \boldsymbol{A} \cdot \operatorname{diag} \left(\boldsymbol{C}_{(k,.)} \right) \boldsymbol{B}_{k}^{\mathsf{T}} \quad \forall k = 1, \dots, K$$

or, the slice-wise multiplication of tensors

$$\boldsymbol{\mathcal{X}}_{(.,.,k)} = \boldsymbol{A} \cdot \boldsymbol{\mathcal{C}}_{(.,.,k)} \cdot \boldsymbol{\mathcal{B}}_{(.,.,k)}$$

- \Rightarrow Slice-wise multiplication can be expressed in terms of contraction
- \Rightarrow Tensor structure enables simultaneous view of all dimensions
 - Efficient computation of the PARAFAC2 decomposition

Slice-wise multiplication in terms of contraction

$$\begin{array}{c} \mathcal{X}_{(.,.,k)} = A \cdot \mathcal{C}_{(.,.,k)} \cdot \mathcal{B}_{(.,.,k)} \quad (I \times J \times K) \\ \end{array} \\ \begin{array}{c} \mathbf{A} \in \mathbb{R}^{I \times R} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{C} = \mathcal{I}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L} = \mathcal{L}_{3,R} \times_3 C \in \mathbb{R}^{R \times R \times K} \\ \mathcal{L$$

Ilmenau University of Technology Communications Research Laboratory

Contraction based on generalized unfoldings (1)

It can be shown that

$$\boldsymbol{\mathcal{D}}_{C} \in \mathbb{R}^{R imes R imes K imes K}$$

$$\mathcal{D}_{C} = \left(\mathcal{I}_{4,K} \otimes \mathcal{I}_{3,R} \right) \times_{1} \left(\mathbf{1}_{K}^{\mathsf{T}} \otimes \mathbf{I}_{R} \right) \times_{2} \left(\mathbf{1}_{K}^{\mathsf{T}} \otimes \mathbf{I}_{R} \right) \times_{3} \left(\left(\mathbf{I}_{K} \otimes \mathbf{1}_{R}^{\mathsf{T}} \right) \diamond \operatorname{vec} \left(\mathbf{C}^{\mathsf{T}} \right)^{\mathsf{T}} \right)$$
$$\mathcal{X} = \left(\mathcal{D}_{C} \times_{1} \mathbf{A} \right) \bullet_{2,4}^{1,3} \mathcal{B}$$

Using the generalized unfoldings, we get

$$[\mathcal{X}]_{([1,2],3)} = [\mathcal{D}_C \times_1 A]_{([1,3],[2,4])} [\mathcal{B}]_{([1,3],2)}$$

Kronecker product between two tensors $\mathcal{A} \in \mathbb{C}^{M \times N \times L}$ and $\mathcal{B} \in \mathbb{C}^{P \times Q \times R}$ yields $\mathcal{K} = \mathcal{A} \otimes \mathcal{B} \in \mathbb{C}^{MP \times NQ \times LR}$

Ilmenau University of Technology Communications Research Laboratory

Contraction based on generalized unfoldings (2)

$$\begin{aligned} \mathbf{\mathcal{I}} \quad [\mathcal{X}]_{([1,2],3)} &= [\mathcal{D}_C \times_1 A]_{([1,3],[2,4])} [\mathcal{B}]_{([1,3],2)} \qquad \mathcal{B} = \mathcal{V} \times_1 F^{\mathsf{T}} \\ [\mathcal{X}]_{([1,2],3)} &= \left(\left((I_K \otimes \mathbf{1}_R^{\mathsf{T}}) \diamond \operatorname{vec} \left(C^{\mathsf{T}} \right)^{\mathsf{T}} \right) \bigotimes A \left(\mathbf{1}_K^{\mathsf{T}} \otimes I_R \right) \right) \cdot \\ & \left[\mathcal{I}_{4,K} \otimes \mathcal{I}_{3,R} \right]_{([1,3],[2,4])} \cdot \left(I_K \otimes \mathbf{1}_K^{\mathsf{T}} \otimes I_R \right)^{\mathsf{T}} \right] \\ & \left(I_K \otimes F^{\mathsf{T}} \right) \cdot [\mathcal{V}]_{([1,3],2)} \\ \end{aligned}$$
It is a selection matrix that converts the Kronecker into a Khatri-Rao product
$$I_{RK} \diamond I_{RK} \\ \end{aligned}$$

$$\square [\mathcal{X}]_{([1,2],3)} = \left(\left((I_K \otimes \mathbf{1}_R^{\mathsf{T}}) \diamond \operatorname{vec} \left(C^{\mathsf{T}} \right)^{\mathsf{T}} \right) \otimes A \left(\mathbf{1}_K^{\mathsf{T}} \otimes I_R \right) \right) \cdot \left(I_K \otimes F^{\mathsf{T}} \right) \cdot [\mathcal{V}]_{([1,3],2)}$$

 \Rightarrow This is an unfolding of **constrained CP decomposition**.

Ilmenau University of Technology Communications Research Laboratory

PARAFAC2 as a Constrained CP Decomposition

 \Rightarrow where, $ar{B} = [\mathcal{B}]_{(2,[1,3])}$

- degenerate CP model in all three modes
- in general not unique
- but, the factor matrices are constrained
 - \Rightarrow exploiting this matrix structure leads to better identifiability

[dAFM08] A. L. F. de Almeida, G. Favier, and J. C. M. Mota, "A Constrained Factor Decomposition with Application to MIMO Antenna Systems," *IEEE Transactions on Signal Processing*, vol. 56, no. 6, pp. 2429–2442, 2008.

LS estimates of ${\cal V}$

Assuming that A, C, F, and known

$$[\mathcal{V}]_{([1,3],2)} = \left((C \diamond \bar{A}) \cdot (I_K \otimes F^{\top}) \right)^+ \cdot [\mathcal{X}]_{([1,2],3)}$$

- does not take into account the orthogonality constraints
- but, applicable if the Harshman constraint is not considered,

alternatively

$$\bar{B} = [\mathcal{B}]_{(2,[1,3])} = [\mathcal{X}]_{(3,[1,2])} \cdot \left((\bar{C} \diamond \bar{A})^{\mathsf{T}} \right)^+ \qquad \qquad \mathcal{B} = \mathcal{V} \times_1 F^{\mathsf{T}}$$

 $[\mathcal{B}]_{(1,[2,3])} = F^{\top} \cdot [\mathcal{V}]_{(1,[2,3])}$

 \Rightarrow Orthogonal Procrustes Problem (OPP)

less accurate in the noisy case than solving directly the OPP

or solving directly the OPP on $\mathcal{X} = (\mathcal{D}_C \times_1 A) \bullet_{2,4}^{1,3} (\mathcal{V} \times_1 F^{\mathsf{T}})$

[S66] P. H. Schoenemann, "A generalized solution of the orthogonal Procrustes problem," *Psychometrika*, vol. 31, no. 1, pp. 1–10, 1966.

[KBK99] H. A. L. Kiers, J. M. F. Ten Berge, and R. Bro, "PARAFAC2 — Part I. A direct fitting algorithm for the PARAFAC2 model," J. Chemometrics, vol. 13, pp. 275–294, 1999.

LS estimates of A, F, \mathcal{B} , and C

Estimate *A*,

$$\boldsymbol{A} = [\boldsymbol{\mathcal{X}}]_{(1,[2,3])} \cdot \left((\boldsymbol{1}_{K}^{\mathsf{T}} \otimes \boldsymbol{I}_{R}) \cdot (\bar{\boldsymbol{B}} \diamond \bar{\boldsymbol{C}})^{\mathsf{T}} \right)^{+}$$

\square utilizing the orthogonality of \mathcal{V} , estimate F,

$$\tilde{\boldsymbol{\mathcal{X}}} = \boldsymbol{\mathcal{X}} \bullet_{2,3}^{2,3} \boldsymbol{\mathcal{D}}_{\boldsymbol{\mathcal{V}}} = \boldsymbol{\mathcal{I}}_{3,R} \times_1 \boldsymbol{A} \times_2 \boldsymbol{F}^{\mathsf{T}} \times_3 \boldsymbol{C}$$
$$\begin{bmatrix} \boldsymbol{\mathcal{D}}_{\boldsymbol{\mathcal{V}}} \end{bmatrix}_{([1,2,4],[3])} = \boldsymbol{I}_K \diamond [\boldsymbol{\mathcal{V}}]_{([1,2],[3])}$$

$$F = \left[ilde{\mathcal{X}}
ight]_{(2,[1,3])} \cdot \left((C \diamond A)^{\mathsf{T}}
ight)^+$$

compute \mathcal{B} ,

$$\mathcal{B} = \mathcal{V} imes_1 F^{ op}$$

and estimate C

$$\operatorname{vec}\left(\boldsymbol{C}^{\mathsf{T}}\right) = \left(\bar{\boldsymbol{B}} \diamond \left(\boldsymbol{I}_{K} \otimes \boldsymbol{1}_{R}^{\mathsf{T}}\right) \diamond \bar{\boldsymbol{A}}\right)^{+} \cdot \operatorname{vec}\left(\boldsymbol{\mathcal{X}}\right)$$

Ilmenau University of Technology Communications Research Laboratory

Estimate \mathcal{V} by solving the OPP

 $\mathcal{X} = (\mathcal{D}_C \times_1 A) \bullet_{24}^{1,3} (\mathcal{V} \times_1 F^{\top})$

Initialization

C random

 $F = I_R$

A based on SVD

ALS algorithm for PARAFAC2

Based on these estimates we propose a direct fitting ALS algorithm that only has a single loop.

$\square \quad \begin{array}{c} \textbf{Initialization} \\ \Rightarrow A \text{ based on SVD} \end{array}$

- $\Rightarrow C$ random
- $\Rightarrow F = I_R$
- The algorithm is stopped if it
 - \Rightarrow exceeds the predefined maximum number of iterations: 2000
 - \Rightarrow or reaches a predefined minimum of the cost function (reconstruction error): 10⁻⁷

Simulation Results

Synthetic data:

 $\boldsymbol{\mathcal{X}}=\boldsymbol{\mathcal{X}}_{0}+\boldsymbol{\mathcal{N}}$

 \Rightarrow random factors with elements drawn from Gaussian distribution

 $\Rightarrow \mathcal{N}$: i.i.d. zero mean Gaussian noise

 $(SNR = \sigma_n^{-2})$

Accuracy measure

⇒ Squared Reconstruction Error (SRE)

$$\mathsf{SRE} = \frac{\|\hat{\boldsymbol{\mathcal{X}}} - \boldsymbol{\mathcal{X}}_0\|_{\mathsf{H}}^2}{\|\boldsymbol{\mathcal{X}}_0\|_{\mathsf{H}}^2}$$

Comparison

- \Rightarrow **ALS** proposed ALS algorithm with a single loop
- \Rightarrow 2 ALS loops ALS algorithm, outer loop OPP, inner loop CP-ALS [KBK99] \bigcap
- ⇒ ALS + SMD outer loop OPP, inner loop CP-SMD

[KBK99] H. A. L. Kiers, J. M. F. Ten Berge, and R. Bro, "PARAFAC2 — Part I. A direct fitting algorithm for the PARAFAC2 model", J. Chemometrics,vol. 13, pp. 275–294, 1999.

CCDF of SRE, real-valued tensor, 8 x 10 x 12

 $8 \times 10 \times 12$ R = 3SNR = 20 dB 2000 realizations

Initialization based on SVD All algorithms are initialized with the same matrices **Stopping criteria**

- maximum number of iterations (2000)
- 10⁻⁷ minimum of the cost function
- inner ALS loop: maximum 5 iterations
- inner SMD loop: maximum 50 iterations

Ilmenau University of Technology

Communications Research Laboratory

CCDF of SRE, correlated real-valued tensor, 8 x 10 x 12

 $\begin{array}{l} 8\times10\times12\\ R=3\\ \mathrm{SNR}=30~\mathrm{dB}\\ 2000~\mathrm{realizations}\\ \rho_{C}=0.8\\ \mathrm{Initialization~based~on~SVD}\\ \mathrm{All~algorithms~are~initialized} \end{array}$

with the same matrices **Stopping criteria**

- maximum number of iterations (2000)
- 10⁻⁷ minimum of the cost function
- inner ALS loop: maximum 5 iterations
- inner SMD loop: maximum 50 iterations

Ilmenau University of Technology

Number of iterations, correlated real-valued tensor, 8 x 10 x 12

Ilmenau University of Technology

Conclusions: PARAFAC2

- Using this new (general) approach we have shown
 - \Rightarrow PARAFAC2 is equivalent to a **constrained**, **degenerate CP model**
 - \Rightarrow leads to a direct fitting ALS algorithm
 - with only a single loop
 - resulting in less iterations as compared to state-of-the-art algorithms
 - reduced computational complexity

[NCAH18] K. Naskovska, Y. Cheng, A. L. F. de Almeida, and M. Haardt, "Efficient computation of the PARAFAC2 decomposition via generalized tensor contractions," in *Proc. of 52nd Asilomar Conf. on Signals, Systems, and Computers*, Pacific Grove, CA, Oct. 2018.

Ilmenau University of Technology Communications Research Laboratory

Outline

- Tensor Algebra and Notation
- Computation of Tensor Contractions via Generalized Unfoldings
- Double Contractions of Tensors to Represent Slice-wise Multiplications
 ⇒ Element-wise Multiplication of Vectors and Matrices using Contraction
 ⇒ Slice-wise Multiplication of Tensors using Contraction
- Constrained CP model of PARAFAC2 derived via Double Contractions
- Applications to Multi-Carrier MIMO Systems in Wireless Communications
 ⇒ Khatri-Rao Coded MIMO OFDM Systems
 - ⇒ MIMO OFDM Systems
- Conclusions

Ilmenau University of Technology Communications Research Laboratory

Introduction and Motivation: Khatri-Rao Coded MIMO OFDM Systems (1)

- Tensor-based signal processing has a very broad range of applications for multi-dimensional data such as
 - \Rightarrow compressed sensing,
 - \Rightarrow processing of multidimensional big data,
 - \Rightarrow blind source separation using antenna arrays,
 - \Rightarrow modeling communications systems.
- A multi-user communication system was modeled in terms of multilinear algebra for the design of a blind receiver in

[SGB00] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, "Blind PARAFAC receivers for DS-CDMA systems," *IEEE Transactions on Signal Processing*, vol. 48, no. 3, pp. 810–823, 2000.

 An iterative receiver for MIMO-GFDM (Generalized Frequency Division Multiplexing) systems was presented in

[NCH+17] K. Naskovska, S. A. Cheema, M. Haardt, B. Valeev, and Y. Evdokimov, "Iterative GFDM receiver based on the PARATUCK2 tensor decomposition," *in Proc. 21-st International ITG Workshop on Smart Antennas*, 2017.

Ilmenau University of Technology Communications Research Laboratory

Introduction and Motivation: Khatri-Rao Coded MIMO OFDM Systems (2)

- Space-time-frequency models for MIMO communication systems leading to semi-blind receivers were proposed in
- [AFX13] A. L. F. de Almeida, G. Favier, and L. R. Ximenes, "Space-time-frequency (STF) MIMO communication systems with blind receiver based on a generalized PARATUCK2 model," *IEEE Transactions on Signal Processing*, vol. 61, no. 8, pp. 1895–1909, 2013.
- [FA14] G. Favier and A. L. F. de Almeida, "Tensor space-time-frequency coding with semi-blind receivers for MIMO wireless communication systems," IEEE Transactions on Signal Processing, vol. 62, no. 22, pp. 5987–6002, 2014.
- We present a tensor model for MIMO OFDM systems based on a double contraction between a channel tensor and a signal tensor. This tensor model
 - ⇒ provides a **compact** and **flexible** formulation of the MIMO OFDM system model
 - \Rightarrow exploiting it at the receiver leads to a **tensor gain**
 - ⇒ exploits the channel correlation to reduce the number required pilot symbols (as compared to other tensor models)
 - ⇒ can be easily extended to any other multicarrier system, such as GFDM or FBMC

Ilmenau University of Technology Communications Research Laboratory

System Model

MIMO-OFDM communication system in the frequency domain

- $\Rightarrow M_T$ transmit antennas
- $\Rightarrow M_R$ receive antennas
- \Rightarrow N subcarriers
- $\Rightarrow P$ frames, $P = K \cdot Q$, K groups of Q blocks
- $\Rightarrow \tilde{\mathcal{X}} \in \mathbb{C}^{N \times M_T \times K \times Q}$ is the transmitted signal tensor
- $\Rightarrow \tilde{\mathcal{H}} \in \mathbb{C}^{N \times N \times M_R \times M_T}$ is the channel tensor in the frequency domain

$$\mathcal{H} ilde{\mathcal{H}}_{(.,.,m_R,m_T)} = ext{diag} \left(oldsymbol{F}_L \cdot oldsymbol{h}_L^{(m_R,m_T)}
ight) = ext{diag} \left(oldsymbol{ ilde{h}}_L^{(m_R,m_T)}
ight)$$

$$\tilde{\boldsymbol{\mathcal{Y}}} = \tilde{\boldsymbol{\mathcal{H}}} \bullet_{2,4}^{1,2} \tilde{\boldsymbol{\mathcal{X}}} + \tilde{\boldsymbol{\mathcal{N}}} = \tilde{\boldsymbol{\mathcal{Y}}}_0 + \tilde{\boldsymbol{\mathcal{N}}} \in \mathbb{C}^{N \times M_R \times K \times Q}$$

 \Rightarrow compact and flexible formulation of the MIMO OFDM system

 \Rightarrow can be easily extended to any other multi-carrier system

 F_L contains the first L columns of a DFT matrix of size $N \times N$

L channel taps $h_L^{(m_R,m_T)}$ channel impulse response

[NHdA17] K. Naskovska, M. Haardt, and A. L. F. de Almeida, "Generalized tensor contraction with application to Khatri-Rao Coded MIMO OFDM systems," in *Proc. IEEE 7th Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)*, pp. 286 - 290, Dec. 2017.

Channel Tensor (1)

Ilmenau University of Technology Communications Research Laboratory

Channel Tensor (2)

 \Rightarrow where

- e_{m_T} is a pivoting vector of length M_T containing all zeros and one at the m_T -th position

•
$$\boldsymbol{\mathcal{D}} \in \mathbb{R}^{N imes N imes N imes 1}$$

$$\mathcal{D} = \mathcal{I}_{4,1} \otimes \mathcal{I}_{3,N}$$

Kronecker product between two tensors $\mathcal{A} \in \mathbb{C}^{M \times N \times L}$ and $\mathcal{B} \in \mathbb{C}^{P \times Q \times R}$ yields $\mathcal{K} = \mathcal{A} \otimes \mathcal{B} \in \mathbb{C}^{MP \times NQ \times LR}$

Ilmenau University of Technology Communications Research Laboratory

Channel Tensor (3)

Data Transmission

Data transmission using Khatri-Rao space-time (KRST) coding

[SB02] N. D. Sidiropoulos and R. S. Budampati, "Khatri-Rao Space-Time codes," *IEEE Transactions on Signal Processing*, vol. 50, no. 10, pp. 2396–2407, 2002.

Communications Research Laboratory

Khatri-Rao coded signal tensor

 $\Box \ \tilde{X} \in \mathbb{C}^{N \times M_T \times K \times Q}$ contains Khatri-Rao coded symbols

 \Rightarrow for each subcarrier $n = 1, \dots, N$

 \Rightarrow the coding is proportional to the number of transmit antennas, $Q = M_{\rm T}$

 \Rightarrow the generalized unfolding of the signal tensor is

$$\begin{split} [\tilde{\boldsymbol{\mathcal{X}}}]_{([2,1],[4,3])} &= \begin{bmatrix} \boldsymbol{S}_1 \diamond \boldsymbol{C}_1 & \boldsymbol{S}_2 \diamond \boldsymbol{C}_2 & \dots & \boldsymbol{S}_N \diamond \boldsymbol{C}_N \end{bmatrix}^T \in \mathbb{C}^{M_T N \times QK} \\ &= \boldsymbol{I}_{M_T \cdot N} (\bar{\boldsymbol{S}} \diamond \bar{\boldsymbol{C}})^T \end{split}$$

$$oldsymbol{S}_n \in \mathbb{C}^{K imes M_T}$$

 $oldsymbol{C}_n \in \mathbb{C}^{Q imes M_T}$
 $oldsymbol{ar{S}} = egin{bmatrix} oldsymbol{S}_1 & \dots & oldsymbol{S}_N \end{bmatrix} \in \mathbb{C}^{K imes M_T \cdot N}$
 $oldsymbol{ar{C}} = egin{bmatrix} oldsymbol{C}_1 & \dots & oldsymbol{S}_N \end{bmatrix} \in \mathbb{C}^{Q imes M_T \cdot N}$

Ilmenau University of Technology Communications Research Laboratory

Noiseless Received Signal

$$\tilde{\boldsymbol{\mathcal{Y}}}_{0} = \tilde{\boldsymbol{\mathcal{H}}} \bullet_{2,4}^{1,2} \tilde{\boldsymbol{\mathcal{X}}} \in \mathbb{C}^{N \times M_{R} \times K \times Q}$$

can be expressed as

$$[\tilde{\mathcal{Y}}_0]_{([1,2],[4,3])} = [\tilde{\mathcal{H}}]_{([1,3],[4,2])} \cdot [\tilde{\mathcal{X}}]_{([2,1],[4,3])}$$

⇒ by inserting the corresponding unfoldings of the channel and the signal tensor, we get

$$[\tilde{\boldsymbol{\mathcal{Y}}}_0]_{([1,2],[4,3])} = \left(\bar{\boldsymbol{H}} \diamond (\boldsymbol{I}_N \otimes \boldsymbol{1}_{M_T}^T)\right) \cdot (\bar{\boldsymbol{S}} \diamond \bar{\boldsymbol{C}})^T$$

"generalized" unfolding of a 4-way constrained CP tensor

$$\mathbf{\tilde{y}}_{0} = \mathbf{\mathcal{I}}_{4,M_{T}\cdot N} \times_{1} (\mathbf{I}_{N} \otimes \mathbf{1}_{M_{T}}^{T}) \times_{2} \mathbf{\bar{H}} \times_{3} \mathbf{\bar{S}} \times_{4} \mathbf{\bar{C}}$$

 \Rightarrow depending on the available a priori knowledge at the receiver,

- channel estimation, symbol estimation, or joint channel and symbol estimation can be performed
- channel correlation on adjacent subcarriers can be exploited

Khatri-Rao Receiver

From the tensor model, we get $[\tilde{\boldsymbol{\mathcal{Y}}}]_{([1,4],[3,2])} \approx (\bar{\boldsymbol{C}} \diamond (\boldsymbol{I}_N \otimes \boldsymbol{1}_{M_T}^T)) \cdot (\bar{\boldsymbol{H}} \diamond \bar{\boldsymbol{S}})^T$

$$\Rightarrow Q = M_T$$

$$\Rightarrow \left(\bar{\boldsymbol{C}} \diamond (\boldsymbol{I}_N \otimes \boldsymbol{1}_{M_T}^T) \right) \in \mathbb{C}^{N \cdot Q \times M_T \cdot N}$$

- block diagonal
- left invertible
- known at the receiver

$$\Rightarrow \boldsymbol{C}_n^H \boldsymbol{C}_n = M_T \cdot \boldsymbol{I}_{M_T}$$
$$\Rightarrow \boldsymbol{\bar{Y}} = \frac{1}{M_T} \left(\boldsymbol{\bar{C}} \diamond (\boldsymbol{I}_N \otimes \boldsymbol{1}_{M_T}^T) \right)^H \cdot [\boldsymbol{\tilde{Y}}]_{([1,4],[3,2])} \approx (\boldsymbol{\bar{H}} \diamond \boldsymbol{\bar{S}})^T$$

Using the Least Squares – Khatri-Rao Factorization we can estimate

$$egin{aligned} ar{H} &= ar{H} \cdot \Lambda, \ ar{S} &= ar{S} \cdot \Lambda^{-1} \end{aligned} egin{aligned} &\Lambda \in \mathbb{C}^{M_T \cdot N imes M_T \cdot N} \ & ext{is a diagonal} \ & ext{scaling matrix} \end{aligned}$$

[CCH+17] Y. Cheng, S. A. Cheema, M. Haardt, A. Weiss, and A. Yeredor, "Performance analysis of leastsquares Khatri-Rao factorization," in *Proc. IEEE 7th Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)*, Curacao, Dutch Antilles, pp. 447 - 486, Dec. 2017.

Resolving the Scaling Ambiguity

 $\square \ \mathbf{\Lambda} \in \mathbb{C}^{M_T \cdot N \times M_T \cdot N}$

 \Rightarrow with the knowledge of one row of the matrix $ar{S}$

- equivalent to $M_T N$ pilot symbols
- \Rightarrow using less pilot symbols and applying channel interpolation techniques for OFDM

- spacing in the frequency domain ΔF
- spacing in the time domain ΔK
- with the prior knowledge of the pilot symbols and their positions, we obtain a **pilot based** channel estimate \hat{H}_p by exploiting the channel **correlation**

•
$$\hat{\Lambda} = \operatorname{diag} \left(\frac{1}{M_R} \sum_{i=1}^{M_R} \hat{H}(i,.) \oslash \hat{H}_p(i,.) \right)$$
 \oslash element-wise division

Ilmenau University of Technology Communications Research Laboratory

Enhancement via Least Squares

□ After the scaling ambiguity that affects the columns of \overline{H} and \overline{S} is resolved we can enhance these estimates based on least squares ⇒ using the decoded symbols $Q(\widehat{S})$

$$\Rightarrow \widehat{\boldsymbol{H}}_{\mathsf{LS}}^{T} = \left((\boldsymbol{I}_{N} \otimes \boldsymbol{1}_{M_{T}}^{T}) \diamond \overline{\boldsymbol{C}} \diamond Q(\widehat{\boldsymbol{S}}) \right)^{+} \cdot [\tilde{\boldsymbol{\mathcal{Y}}}]_{([2,4,1],[3])}$$

 \Rightarrow improve the estimate of the diagonal scaling matrix

$$\widehat{\boldsymbol{\Lambda}}_{\mathsf{LS}} = \mathsf{diag}\left(\frac{1}{M_R}\sum_{i=1}^{M_R}\widehat{\boldsymbol{H}}(i,.) \oslash \widehat{\boldsymbol{H}}_{\mathsf{LS}}(i,.)\right)$$

 \Rightarrow improve the estimate of the symbols

$$\hat{S}_{\mathsf{LS}} = \hat{S} \cdot \hat{\Lambda}_{\mathsf{LS}}$$

Ilmenau University of Technology Communications Research Laboratory

Comparison of the SER for different spacings of the pilot positions

Ilmenau University of Technology

Comparison of the SER for different numbers of transmit and receive antennas

Ilmenau University of Technology Communications Research Laboratory

oratory

Conclusions: Khatri-Rao Coded MIMO OFDM Systems

- Tensor model for MIMO OFDM systems based on a double contraction between a channel tensor and a signal tensor
 - ⇒ provides a **compact** and **flexible** formulation of this Khatri-Rao coded MIMO OFDM system
 - ⇒ can be easily extended to any other multi-carrier schemes, such as GFDM or FBMC
 - \Rightarrow exploiting it at the receiver side leads to a **tensor gain**
- The proposed Khatri-Rao receiver
 - \Rightarrow has an **improved** performance in terms of the SER
 - ⇒ exploits the channel correlation between adjacent subcarriers
 - ⇒ requires the same amount of training symbols as traditional OFDM techniques
 - \Rightarrow can be extended to an iterative receiver if $Q \leq M_T$ for an improved performance
 - \Rightarrow can be extended to a system with random coding matrices

Outline

- Tensor Algebra and Notation
- Computation of Tensor Contractions via Generalized Unfoldings
- Double Contractions of Tensors to Represent Slice-wise Multiplications
 ⇒ Element-wise Multiplication of Vectors and Matrices using Contraction
 ⇒ Slice-wise Multiplication of Tensors using Contraction
- Constrained CP model of PARAFAC2 derived via Double Contractions
- Applications to Multi-Carrier MIMO Systems in Wireless Communications
 - ⇒ Khatri-Rao Coded MIMO OFDM Systems
 - \Rightarrow MIMO OFDM Systems
- Conclusions

Ilmenau University of Technology Communications Research Laboratory

Introduction and Motivation: MIMO OFDM Systems

- We propose a tensor model for MIMO OFDM system
 - ⇒ based on the double contraction between a channel tensor and a signal tensor
 - no additional spreading
- This tensor model
 - ⇒ provides a compact and flexible formulation of the MIMO OFDM system
 - \Rightarrow exploiting it at the receiver side leads to a **tensor gain**
 - ⇒ exploits the channel correlation to reduce the number required pilot symbols (as compared to other tensor models)
 - ⇒ can be easily extended to any other multi-carrier system, such as GFDM or FBMC

[NHdA18] K. Naskovska, M. Haardt, and A. L. F. de Almeida, "Generalized Tensor Contractions for an Improved Receiver design in MIMO-OFDM Systems," in *Proc. IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, Calgary, Alberta, Canada, pp. 3186 - 3190, Apr. 2018.

System Model

- MIMO-OFDM communication system in the frequency domain
 - $\Rightarrow M_T$ transmit antennas
 - $\Rightarrow M_R$ receive antennas
 - \Rightarrow N subcarriers
 - \Rightarrow K frames
 - $\Rightarrow \tilde{S} \in \mathbb{C}^{N \times M_T \times K} \text{ is the signal tensor} \\\Rightarrow \tilde{\mathcal{H}} \in \mathbb{C}^{N \times N \times M_R \times M_T} \text{ is the channel tensor in the frequency domain}$

$$\mathbf{\tilde{H}}_{(.,.,m_R,m_T)} = \operatorname{diag}\left(\mathbf{F}_L \cdot \mathbf{h}_L^{(m_R,m_T)}\right) = \operatorname{diag}\left(\mathbf{\tilde{h}}_L^{(m_R,m_T)}\right)$$

$$\tilde{\boldsymbol{\mathcal{Y}}} = \tilde{\boldsymbol{\mathcal{H}}} \bullet_{2,4}^{1,2} \tilde{\boldsymbol{\mathcal{S}}} + \tilde{\boldsymbol{\mathcal{N}}} = \tilde{\boldsymbol{\mathcal{Y}}}_0 + \tilde{\boldsymbol{\mathcal{N}}} \in \mathbb{C}^{N \times M_R \times K}$$

- \Rightarrow compact and flexible formulation of the MIMO OFDM system
- \Rightarrow can be easily extended to any other multi-carrier system

 $oldsymbol{F}_L$ contains the first $\,L\,{
m columns}$ of DFT matrix of size $\,N imes N$

 L_{χ} channel taps

 $oldsymbol{h}_L^{(m_R,m_T)}$ channel impulse response

Ilmenau University of Technology Communications Research Laboratory CRL

Data transmission

The transpose of the 3-mode unfolding of uncoded signal tensor $\tilde{\boldsymbol{S}} \in \mathbb{C}^{N \times M_T \times K}$ is

$$\bar{\boldsymbol{S}} = \tilde{\boldsymbol{\mathcal{S}}}_{([1,2],[3])}^T = \begin{bmatrix} \tilde{\boldsymbol{S}}^{(1)} & \tilde{\boldsymbol{S}}^{(2)} & \dots & \tilde{\boldsymbol{S}}^{(M_T)} \end{bmatrix} \in \mathbb{C}^{K \times N \cdot M_T}$$

 $\tilde{S}^{(m_T)} \in \mathbb{C}^{K \times N}$ contains the symbols transmitted via the m_T -th antenna Moreover, we assume that the symbol matrix consists of data and pilot symbols

$$ar{S} = ar{S}_d + ar{S}_p$$

data pilots

 \Rightarrow The matrix $ar{S}_d$ contains zeros at the positions of the pilot symbols.

- \Rightarrow The matrix \bar{S}_p contains zeros at the positions of the data symbols.
- \Rightarrow Pilots are sent **only** in the **first frame** with a subcarrier spacing of ΔF between two pilot symbols

OFDM Receivers

Received signal

$$\tilde{\boldsymbol{\mathcal{Y}}} = \tilde{\boldsymbol{\mathcal{H}}} \bullet_{2,4}^{1,2} \tilde{\boldsymbol{\mathcal{S}}} + \tilde{\boldsymbol{\mathcal{N}}} = \tilde{\boldsymbol{\mathcal{Y}}}_0 + \tilde{\boldsymbol{\mathcal{N}}} \in \mathbb{C}^{N \times M_R \times K}$$

$$[\tilde{\mathcal{Y}}]_{([1,2],[3])} = [\tilde{\mathcal{H}}]_{([1,3],[2,4])}\tilde{\mathcal{S}}_{([1,2],[3])} + [\tilde{\mathcal{N}}]_{([1,2],[3])} \in \mathbb{C}^{N \cdot M_R \times K}$$
$$[\tilde{\mathcal{Y}}]_{([1,2],[3])} = \left(\bar{\boldsymbol{H}} \diamond (\mathbf{1}_{M_T}^T \otimes \boldsymbol{I}_N)\right) \cdot \bar{\boldsymbol{S}}^T + [\tilde{\mathcal{N}}]_{([1,2],[3])}$$

$$\tilde{\boldsymbol{\mathcal{Y}}} = \boldsymbol{\mathcal{I}}_{3,N\cdot M_T} \times_1 (\boldsymbol{1}_{M_T}^T \otimes \boldsymbol{I}_N) \times_2 \bar{\boldsymbol{H}} \times_3 \bar{\boldsymbol{S}} + \tilde{\boldsymbol{\mathcal{N}}}$$

\Rightarrow constrained CP model

 \Rightarrow degenerate CP model in all three modes (more challenging)

🗖 Goal

 \Rightarrow jointly estimate the channel and the symbols

ZF Receiver

□ With the prior knowledge of the pilot symbols and their positions, we obtain a **pilot based** channel estimate $\hat{\mathbf{H}}_p(\hat{\mathbf{\mathcal{H}}}_p)$ by exploiting the channel correlation

Zero Forcing (ZF) Receiver

$$\begin{array}{l} \text{initialization } \tilde{\boldsymbol{\mathcal{H}}}_{\mathrm{p}} \\ \mathbf{for } n = 1: N \ \mathbf{do} \\ \big| \quad \hat{\tilde{\boldsymbol{\mathcal{S}}}}_{(n,.,.)} \approx \hat{\tilde{\boldsymbol{\mathcal{H}}}}_{\mathrm{p}(n,n,.,.)}^{+} \tilde{\boldsymbol{\mathcal{Y}}}_{(n,.,.)} \\ \mathbf{end} \end{array}$$

Ilmenau University of Technology

Improved Receiver Design

 Alternatively, the channel and the symbols on each subcarrier can be estimated from

$$[\tilde{\boldsymbol{\mathcal{Y}}}]_{([1],[2,3])}^{T} = \sum_{m_T=1}^{M_T} \left(\tilde{\boldsymbol{S}}^{(m_T)} \diamond \tilde{\boldsymbol{H}}_R^{(m_T)} \right) + [\tilde{\boldsymbol{\mathcal{N}}}]_{([1],[3,2])}^{T} \in \mathbb{C}^{KM_R \times N}$$

 \Rightarrow This sum can be resolved by imposing orthogonality constraints

Khatri-Rao Coding

[NHA17] K. Naskovska, M. Haardt, and A. L. F. de Almeida, "Generalized tensor contraction with application to Khatri-Rao coded MIMO OFDM systems," in Proc. IEEE 7th Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 286 – 290, 2017.

 \Rightarrow or in column-wise fashion

$$\tilde{\boldsymbol{Y}}_n \approx \tilde{\boldsymbol{H}}_n \cdot \tilde{\boldsymbol{S}}_n \in \mathbb{C}^{M_R \times K}$$

 $\tilde{y}_n = \operatorname{vec}(\tilde{Y}_n)$ where \tilde{y}_n denotes the *n*-th column of $[\tilde{\mathcal{Y}}]_{([1],[2,3])}^T$

$$ilde{oldsymbol{H}}_n = ilde{oldsymbol{\mathcal{H}}}_{(n,n,.,.)} \quad ilde{oldsymbol{S}}_n = ilde{oldsymbol{\mathcal{S}}}_{(n,.,.)}$$

[TVP94] S. Talwar, M. Viberg, and A. Paulraj, "Blind estimation of multiple cochannel digital signals using an antenna array," IEEE Signal Processing Letters, vol. 1, no. 2, pp. 29–31, 1994.

[TVP96] ——, "Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms," *IEEE Trans. Signal Process.*, vol. 44, no. 5, pp. 1184–1197, 1996.

Iterative Least Squares with Projection (ILSP)

initialization
$$\tilde{\mathcal{H}}_{p}$$
, maxIteration, minErr
for $n = 1 : N$ do
set $i = 1, e = \infty$
while $i < maxIteration or $e > minErr$ do
 $\left| \begin{array}{c} \tilde{\mathbf{S}}_{n}^{(i)} = (\tilde{\mathbf{H}}_{n}^{(i-1)H} \tilde{\mathbf{H}}_{n}^{(i-1)})^{-1} \tilde{\mathbf{H}}_{n}^{(i-1)H} \tilde{\mathbf{Y}}_{n} \\ \tilde{\mathbf{S}}_{n}^{(i)} = proj \left(\tilde{\mathbf{S}}_{n}^{(i)} \right) \\ \tilde{\mathbf{S}}_{n}^{(i)} = proj \left(\tilde{\mathbf{S}}_{n}^{(i)} \right) \\ \tilde{\mathbf{S}}_{n}^{(i)} = \tilde{\mathbf{Y}}_{n} \tilde{\mathbf{S}}_{n}^{(i)H} (\tilde{\mathbf{S}}_{n}^{(i)H} \tilde{\mathbf{S}}_{n}^{(i)})^{-1} \\ | \tilde{\mathbf{H}}_{n}^{(i)} = \tilde{\mathbf{Y}}_{n} \tilde{\mathbf{S}}_{n}^{(i)H} (\tilde{\mathbf{S}}_{n}^{(i)H} \tilde{\mathbf{S}}_{n}^{(i)})^{-1} \\ | else \\ | \tilde{\mathbf{H}}_{n}^{(i)} = \tilde{\mathbf{H}}_{n}^{(i-1)} \\ end \\ i = i + 1, e = || \tilde{\mathbf{H}}_{n}^{(i-1)} - \tilde{\mathbf{H}}_{n}^{(i)} ||_{F}^{2} \\ end \end{array}$$

for each subcarrier

in each iteration

Symbols are estimated via LS and projected onto the finite alphabet

If the estimated symbol matrix has rank M_T , an update of the channel estimate will be computed in a LS sense

end

Ilmenau University of Technology

Iterative Least Squares with Enumeration (ILSE)

initialization \mathcal{H}_{p} , maxIteration, minErr for n = 1 : N do set $i = 1, e = \infty$ while i < maxIteration or e > minErr dofor k = 1 : K do $\hat{\boldsymbol{s}} = \arg\min_{\boldsymbol{s}^{(j)} \in \Omega} \|\tilde{\boldsymbol{Y}}_{n(.,k)} - \tilde{\boldsymbol{H}}_{n}^{(i-1)} \boldsymbol{s}^{(j)}\|$ $j = 1, \dots M^{M_T}$ $\hat{oldsymbol{S}}_{n(.,k)}^{(i)}=\hat{oldsymbol{s}}$ end if rank $(\tilde{\boldsymbol{S}}_{n}^{(i)}) = M_{T}$ then $| \tilde{\boldsymbol{H}}_{n}^{(i)} = \tilde{\boldsymbol{Y}}_{n} \tilde{\boldsymbol{S}}_{n}^{(i)H} (\tilde{\boldsymbol{S}}_{n}^{(i)H} \tilde{\boldsymbol{S}}_{n}^{(i)})^{-1}$ else $ilde{m{H}}_n^{(i)} = ilde{m{H}}_n^{(i-1)}$ end $i = i + 1, e = \|\tilde{\boldsymbol{H}}_{n}^{(i-1)} - \tilde{\boldsymbol{H}}_{n}^{(i)}\|_{\mathrm{F}}^{2}$ end end

for each subcarrier

in each iteration

Symbols are estimated based on enumeration (exhaustive search)

If the estimated symbol matrix has rank M_T , an update of the channel estimate will be computed in a LS sense

Recursive Least Squares with Projection (RLSP)

initialization
$$\tilde{\mathcal{H}}_{p}$$
, $0 \le \alpha \le 1$
for $n = 1 : N$ do
 $\tilde{S}_{n} = (\tilde{H}_{n}^{H} \tilde{H}_{n})^{-1} \tilde{H}_{n}^{H} \tilde{Y}_{n}$
 $\tilde{S}_{n} = \text{proj}(\tilde{S}_{n})$
set $P^{(0)} = I_{M_{T}}, \tilde{H}_{n}^{(0)} = \tilde{H}_{n}$
for $k = 1 : K$ do
 $s = \tilde{S}_{n(.,k)}$
 $\tilde{H}_{n}^{(k)} = \tilde{H}_{n}^{(k-1)} + \frac{(\tilde{Y}_{n(.,k)} - \tilde{H}_{n}^{(k-1)}s)}{\alpha + s^{H}P^{(k-1)}s}s^{H}P^{(k-1)}$
Recursive least squares estimate of the channel
end
end

Ilmenau University of Technology

Recursive Least Squares with Enumeration (RLSE)

initialization
$$\tilde{\mathcal{H}}_{p}$$
, $0 \le \alpha \le 1$
for $n = 1 : N$ do
set $P^{(0)} = I_{M_T}$, $\tilde{\mathcal{H}}_n^{(0)} = \tilde{\mathcal{H}}_n$
for $k = 1 : K$ do
 $\hat{s} = \arg \min_{s^{(j)} \in \Omega} \|\tilde{Y}_{n(.,k)} - \tilde{\mathcal{H}}_n^{(k-1)} s^{(j)}\|$
 $j = 1, \dots M^{M_T}$
 $\tilde{S}_{n(.,k)} = \hat{s}$
 $\tilde{\mathcal{H}}_n^{(k)} = \tilde{\mathcal{H}}_n^{(k-1)} + \frac{(\tilde{Y}_{n(.,k)} - \tilde{\mathcal{H}}_n^{(k-1)} \hat{s})}{\alpha + \hat{s}^H P^{(k-1)} \hat{s}} \hat{s}^H P^{(k-1)}$
 $P^{(k)} = \frac{1}{\alpha} \left(P^{(k-1)} - \frac{P^{(k-1)} \hat{s} \hat{s}^H P^{(k-1)}}{\alpha + \hat{s}^H P^{(k-1)} \hat{s}} \right)$
Recursive least squares estimate of the channel
end
end

Ilmenau University of Technology

66

ZF, **ILSP**, **ILSE**, **RLSP**, and **RLSE** for *K* = 2

Ilmenau University of Technology

ZF, ILSP, ILSE, RLSP, and RLSE for K = 8

Comparison of ZF, RLSP, and RLSE for Different Antenna Configurations

Ilmenau University of Technology

Communications Research Laboratory

Conclusions: MIMO OFDM Systems (1)

- We present a tensor model for MIMO OFDM systems based on a double contraction between a channel tensor and a signal tensor
 - ⇒ provides a compact and flexible formulation of the MIMO OFDM system
 - ⇒ can be easily extended to other multi-carrier schemes, such as GFDM or FBMC
- This model facilitates the design of several types of receivers based on iterative LS and recursive LS (RLS) algorithms
 - \Rightarrow ILSP and RLSP show a similar performance as the ZF algorithm
 - ⇒ ISLE and RLSE based on enumeration, outperform the rest of the algorithms at the cost of increased complexity
 - \Rightarrow both recursive algorithms have less computational complexity
 - \Rightarrow the RLSE algorithm does not need matrix inversion
 - suitable for any configuration setup, even time-varying channels

Conclusions: MIMO OFDM Systems (2)

- In the future,
 - ⇒ recursive algorithms can be used to exploit the correlation of the channel tensor
 - ⇒ multiple unfoldings can be exploited sequentially to capture the tensor structure in the receiver design
- Exploitation of the sparse tensor structure of mmWave channels
 - \Rightarrow significant reduction of the pilot overhead (semi-blind channel and symbol estimation)
 - \Rightarrow increase of the spectral efficiency
 - \Rightarrow reduction of the latency
 - \Rightarrow facilitates fast tracking of rapidly varying channels

Conclusions

- Slice-wise multiplication of two tensors
 - \Rightarrow is required in a variety of tensor decompositions
 - PARAFAC2, PARATUCK2, ...
 - \Rightarrow and is encountered in many applications
 - biomedical data (EEG, MEG, etc.)
 - multi-carrier MIMO systems
 - \Rightarrow provide a new tensor representation
 - that is not based on a slice-wise (matrix) description
 - \Rightarrow can be represented by a **double contraction**
 - efficiently calculated via generalized unfoldings
 - leads to new tensor models that do not depend on the chosen unfolding
 - reveal the constrained CP tensor structure of the data model

Can be exploited to derive improved receivers and/or improved (blind or semi-blind) model identification algorithms

THANK YOU!

Ilmenau University of Technology Communications Research Laboratory

73