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Motivation

 Slice-wise multiplication of two tensors 
⇒ is required in a variety of tensor decompositions

• PARAFAC2
• PARATUCK2

⇒and is encountered in many applications
• biomedical data analysis (EEG, MEG, etc.)
• multi-carrier MIMO systems

⇒provide a new tensor representation
• that is not based on a slice-wise (matrix) description

⇒can be represented by a double contraction of two tensors
• efficiently calculated via generalized unfoldings
• leads to new tensor models that do not depend 

on the chosen unfolding 
• reveal the tensor structure of the data model (constrained CP)
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Tensor algebra

 3-D tensor = 3-way array

 n-mode products between                          and

 Unfoldings

M1

M2

M3

“1-mode vectors”

“2-mode vectors”

“3-mode vectors”

1 2
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Tensor algebra

 3-D tensor = 3-way array

 n-mode products between                          and

 Unfoldings

M1

M2

M3

“1-mode vectors”

“2-mode vectors”

“3-mode vectors”

i.e., all the n-mode vectors 
multiplied from the left-hand-side 
by

1 2
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Canonical Polyadic (CP) Decomposition

 Decomposes a given R-way array (tensor) into a sum of (the minimum 
number of) rank-one components
⇒Canonical Polyadic (CP) decomposition, also known as 

Parallel Factor (PARAFAC) analysis or Canonical Decomposition 
(CANDECOMP)

⇒applications in psychometrics, chemometrics, array signal processing, 
communications, biomedical signal processing, data mining, 
image/video processing, etc.

1 1 1
1 2

+ + =

M2

M1 M3

=
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n-mode unfoldings of a 4-way CP tensor

 4-way CP:

⇒one index in the rows, all others in the columns
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“Generalized” unfoldings of a 4-way CP tensor

 4-way CP:

 In general: 
⇒ an arbitrary subset of indices in the rows, all other indices in the columns

(etc.)

[RSH12] F. Roemer, C. Schroeter, and M. Haardt, “A semi-algebraic framework for approximate CP 
decompositions via joint matrix diagonalization and generalized unfoldings,” in Proc. of the 46th 
Asilomar Conference on Signals, Systems, and Computers, pp. 2023–2027, November 2012.
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Motivation: Tensor Contraction (1)

 Slice-wise multiplication of two tensors is required in many signal  
processing applications and tensor decompositions, such as 
⇒PARAFAC2 tensor decomposition

⇒data analysis based on the PARAFAC2 tensor decomposition

[H72]        R. A. Harshman, PARAFAC2: “Mathematical and technical notes,” UCLA Working Papers in      
Phonetics, vol. 22, pp. 30–47, 1972.

[K93]        H. A. L. Kiers, “An alternating least squares algorithm for PARAFAC2 and three-way DEDICOM,”   
Comput. Stat. Data. An., vol. 16, pp. 103–118, 1993.

[WJR+10] M. Weis, D. Jannek, F. Roemer, T. Guenther, M. Haardt, and P. Husar, “Multi-dimensional 
PARAFAC2 component analysis of multi-channel EEG data including temporal tracking,“ in Proc. 32-
th Inter. Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Sept. 2010.

[WJG+10] M. Weis, D. Jannek, T. Guenther, P. Husar, F. Roemer, and M. Haardt, “Temporally resolved multi-
way component analysis of dynamic sources in event-related EEG data using PARAFAC2,'' 
in Proc. 18-th European Signal Processing Conference (EUSIPCO 2010), pp. 696-700, Aug. 2010.

[NCAH18] K. Naskovska, Y. Cheng, A. L. F. de Almeida, and M. Haardt, “Efficient computation of the     
PARAFAC2 decomposition via generalized tensor contractions,” in Proc. of 52nd Asilomar Conf. on 
Signals, Systems, and Computers, Pacific Grove, CA, Oct. 2018.
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Motivation: Tensor Contraction (2)
⇒PARATUCK2 tensor decomposition

⇒PARATUCK2 is used to model space-time-frequency tensors for 
multi-carrier MIMO systems in wireless communication

[AF13]         A. L. F. de Almeida and G. Favier, “Unified tensor model for space-frequency spreading-multiplexing 
(SFSM) MIMO communication systems,” EURASIP Journal on Advances in Signal Processing, vol. 
48, 2013

[AFX13]       A. L. F. de Almeida, G. Favier, and L. R. Ximenes, “Space-time-frequency (STF) MIMO 
communication systems with blind receiver based on a generalized PARATUCK2 model,” IEEE 

Transactions on Signal Processing, vol. 61, no. 8, pp. 1895–1909, 2013.

[FA14]        G. Favier and A. L. F. de Almeida, “Tensor space-time-frequency coding with semi-blind receivers for              
MIMO wireless communication systems,” IEEE Transactions on Signal Processing, vol. 62, no. 22,   
pp. 5987– 6002, 2014.

[HL96]         R. A. Harshman and M. E. Lundy, Uniqueness proof for a family of models sharing features of 
Tucker’s three-mode factor analysis and PARAFAC/CANDECOMP, Psychometrika, vol. 61, pp. 
133–154, 1996.

[NCH+17] K. Naskovska, S. A. Cheema, M. Haardt, B. Valeev, and Y. Evdokimov, “Iterative GFDM receiver 
based on the PARATUCK2 tensor decomposition,” in Proc. 21-st International ITG Workshop on 
Smart Antennas, 2017.
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Tensor Contraction 

 represents an inner product of the    -th mode of                        
with the    -th mode of       , provided

• Let us now consider some simpler examples 
[C14]       A. Cichocki, “Era of big data processing: A new approach via tensor networks and tensor 

decompositions,” arXiv:1403.2048 [cs.ET], 2014.

[HRD08] M. Haardt, F. Roemer, and G. Del Galdo, “Higher-order SVD based subspace estimation to improve 
the parameter estimation accuracy in multi-dimensional harmonic retrieval problems,” IEEE   
Transactions on Signal Processing, vol. 56, pp. 3198–3213, 2008.
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“Generalized” unfoldings and Contraction

 Let us take and  as an example

⇒
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“Generalized” unfoldings and Contraction

 Let us take and  as an example

⇒
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“Generalized” unfoldings and Double Contraction
 Moreover, more than one mode can be contracted 

⇒double contraction
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Matrix and n-mode Product using Contraction
 The matrix product between a matrix                   and                        

can be expressed as contraction.   

⇒similar,  
 The -mode product between a tensor and a matrix             

can also be expressed as contraction. 

⇒Both tensors contain the same values, only their dimensions are 
permuted. 
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Element-wise Multiplication of Vectors using Contraction

 Let us define two vectors                  and 
⇒ the element-wise multiplication (Schur-Hadamard product)

or
⇒ is equivalent to 

⇒using the contraction operator

⇒where
(Khatri-Rao product)
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Element-wise Multiplication of Matrices using Contraction (1)

 Next, let us assume two matrices                   and 
⇒ the element-wise multiplication (in two dimensions)

or
⇒using the contraction operator, it is equivalent to 

⇒where

(diagonal matrix)

(diagonal matrix)
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Element-wise Multiplication of Matrices using Contraction (2)

⇒or, for the same two matrices                   and 

⇒where
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Slice-wise Multiplication using Contraction (1)

 A slice wise multiplication of two tensors                        and

 is also equal to  
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Slice-wise Multiplication using Contraction (2)

 A slice wise multiplication of two tensors                        and

 is also equal to  

 Further combination are also possible leading to the same result, such as
⇒

⇒or, with

⇒however, the ordering of the dimensions is permuted
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Computation of the PARAFAC2 decomposition

 PARAFAC2 was proposed in 

 The computation is based on ALS (Alternating Least Squares)
⇒ indirect fitting approach (via PARATUCK2)

⇒direct fitting approach with two loops
• outer loop - Orthogonal Procrustes Problem (OPP)
• inner loop - ALS

⇒also another direct fitting approach with two loops
• outer loop - Orthogonal Procrustes Problem (OPP)
• inner loop – Simultaneous Matrix Diagonalization (SMD)

[H72]      R.A. Harshman, “PARAFAC2: Mathematical and technical notes,” CLA Working Papers in Phonetics  
(University Microfilms, Ann Arbor, Michigan, No. 10,085), vol. 22, pp. 30-44, 1972.

[K93]      H. A. L. Kiers, “An alternating least squares algorithm for PARAFAC2 and three-way DEDICOM,” in 
Computational Statistics & Data Analysis vol. 16, number 1, pp. 103–118, 1993.

[KBB99] H. A. L. Kiers, J. M. F. T. Berge, and R. Bro, „PARAFAC2 - Part I. A direct fitting algorithm for the 
PARAFAC2 model,“ in J. Chemometrics vol.13, no. 3, issue 4, pp. 275–294, 1999.



Ilmenau University of Technology
Communications Research Laboratory 27

PARAFAC2 decomposition

 The PARAFAC2 decomposition can be seen as coupled matrix 
decomposition, coupled in one mode

 or, the slice-wise multiplication of tensors

⇒Slice-wise multiplication can be expressed in terms of contraction
⇒Tensor structure enables simultaneous view of all dimensions  

• Efficient computation of the PARAFAC2 decomposition

Harshman 
constraint:
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Slice-wise multiplication in terms of contraction



 Using the Harshman constraint, we have
⇒
⇒
⇒

 In terms of contraction

note: permuted dimensions
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Contraction based on generalized unfoldings (1)

 It can be shown that 

 Using the generalized unfoldings, we get 

Kronecker product between two tensors and yields
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



⇒This is an unfolding of constrained CP decomposition. 

Contraction based on generalized unfoldings (2)

It is a selection matrix that converts the 
Kronecker into a Khatri-Rao product
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PARAFAC2 as a Constrained CP Decomposition

⇒where,

 degenerate CP model in all three modes
 in general not unique
 but, the factor matrices are constrained 

⇒exploiting this matrix structure leads to better identifiability

[dAFM08] A. L. F. de Almeida, G. Favier, and J. C. M. Mota, “A Constrained Factor Decomposition with 
Application to MIMO Antenna Systems,” IEEE Transactions on Signal Processing, vol. 56, no. 6, 
pp. 2429–2442, 2008.
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LS estimates of (1)

 Assuming that    ,    ,   , and known

• does not take into account the orthogonality constraints 
• but, applicable if the Harshman constraint is not considered,

 alternatively

⇒Orthogonal Procrustes Problem (OPP)
• less accurate in the noisy case than solving directly the OPP

 or solving directly the OPP on

[S66]      P. H. Schoenemann, “A generalized solution of the orthogonal Procrustes problem,” Psychometrika,
vol. 31, no. 1, pp. 1–10, 1966.

[KBK99] H. A. L. Kiers, J. M. F. Ten Berge, and R. Bro, “PARAFAC2 — Part I. A direct fitting algorithm for the 
PARAFAC2 model,” J. Chemometrics, vol. 13, pp. 275–294, 1999.
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 Estimate    ,

 utilizing the orthogonality of     , estimate     ,

 compute     ,

 and estimate

LS estimates of    ,    , , and(2)

Estimate     by solving the OPP

Initialization
based on SVD
random 
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ALS algorithm for PARAFAC2

 Based on these estimates we propose a direct fitting ALS algorithm that 
only has a single loop.

 Initialization
⇒ based on SVD
⇒ random 
⇒

 The algorithm is stopped if it 
⇒exceeds the predefined maximum number of iterations: 2000
⇒or reaches a predefined minimum of the cost function

(reconstruction error): 10-7
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Simulation Results
 Synthetic data:

⇒ random factors with elements drawn from Gaussian distribution
⇒ : i.i.d. zero mean Gaussian noise (SNR =        )

 Accuracy measure
⇒ Squared Reconstruction Error (SRE)

 Comparison 
⇒ ALS - proposed ALS algorithm with a single loop
⇒ 2 ALS loops - ALS algorithm, outer loop OPP, inner loop CP-ALS [KBK99]
⇒ ALS + SMD - outer loop OPP, inner loop CP-SMD

[KBK99] H. A. L. Kiers, J. M. F. Ten Berge, and R. Bro, “PARAFAC2 — Part I. A direct fitting algorithm for the 
PARAFAC2 model”, J. Chemometrics,vol. 13, pp. 275–294, 1999.
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CCDF of SRE, real-valued tensor, 8 x 10 x 12

Initialization based on SVD
All algorithms are initialized 
with the same matrices 
Stopping criteria
• maximum number of 

iterations (2000)
• 10-7 minimum of the cost 

function
• inner ALS loop:     

maximum 5 iterations
• inner SMD loop:

maximum 50 iterations
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CCDF of SRE, correlated real-valued tensor, 8 x 10 x 12

o Initialization based on SVD
o All algorithms are initialized 

with the same matrices 
o Stopping criteria

• maximum number of 
iterations (2000)

• 10-7 minimum of the cost 
function

• inner ALS loop:     
maximum 5 iterations

• inner SMD loop:
maximum 50 iterations
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Number of iterations, correlated real-valued tensor, 
8 x 10 x 12

o Initialization based on SVD
o All algorithms are initialized 

with the same matrices 
o Stopping criteria

• maximum number of 
iterations (2000)

• 10-7 minimum of the cost 
function

• inner ALS loop:
maximum 5 iterations

• inner SMD loop:
maximum 50 iterations

Average number over 
the 2000 realizations:
278
466 (outer loop only)
95 (outer loop only)
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Conclusions: PARAFAC2

 Using this new (general) approach we have shown
⇒PARAFAC2 is equivalent to a constrained, degenerate CP model
⇒ leads to a direct fitting ALS algorithm 

• with only a single loop
• resulting in less iterations as compared to 

state-of-the-art algorithms
• reduced computational complexity

[NCAH18] K. Naskovska, Y. Cheng, A. L. F. de Almeida, and M. Haardt, “Efficient computation of the     
PARAFAC2 decomposition via generalized tensor contractions,” in Proc. of 52nd Asilomar Conf. on 
Signals, Systems, and Computers, Pacific Grove, CA, Oct. 2018.
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Introduction and Motivation: 
Khatri-Rao Coded MIMO OFDM Systems (1)

 Tensor-based signal processing has a very broad range of applications 
for multi-dimensional data such as 
⇒compressed sensing, 
⇒processing of multidimensional big data, 
⇒blind source separation using antenna arrays, 
⇒modeling communications systems.

 A multi-user communication system was modeled in terms of multilinear 
algebra for the design of a blind receiver in

 An iterative receiver for MIMO-GFDM (Generalized Frequency Division 
Multiplexing) systems was presented in

[SGB00] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “Blind PARAFAC receivers for DS-CDMA systems,”  
IEEE Transactions on Signal Processing, vol. 48, no. 3, pp. 810–823, 2000.

[NCH+17] K. Naskovska, S. A. Cheema, M. Haardt, B. Valeev, and Y. Evdokimov, “Iterative GFDM receiver 
based on the PARATUCK2 tensor decomposition,” in Proc. 21-st International ITG Workshop on 
Smart Antennas, 2017.
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Introduction and Motivation: 
Khatri-Rao Coded MIMO OFDM Systems (2)

 Space-time-frequency models for MIMO communication systems leading 
to semi-blind receivers were proposed in

 We present a tensor model for MIMO OFDM systems based on a 
double contraction between a channel tensor and a signal tensor. 
This tensor model
⇒provides a compact and flexible formulation of the MIMO OFDM 

system model
⇒exploiting it at the receiver leads to a tensor gain
⇒exploits the channel correlation to reduce the number required pilot 

symbols (as compared to other tensor models)
⇒can be easily extended to any other multicarrier system, 

such as GFDM or FBMC

[FA14]   G. Favier and A. L. F. de Almeida, “Tensor space-time-frequency coding with semi-blind receivers for 
MIMO wireless communication systems,” IEEE Transactions on Signal Processing, vol. 62, no. 22, pp.    
5987– 6002, 2014.

[AFX13] A. L. F. de Almeida, G. Favier, and L. R. Ximenes, “Space-time-frequency (STF) MIMO communication 
systems with blind receiver based on a generalized PARATUCK2 model,” IEEE Transactions on Signal 
Processing, vol. 61, no. 8, pp. 1895–1909, 2013.
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 MIMO-OFDM communication system in the frequency domain
⇒ transmit antennas    
⇒ receive antennas
⇒ subcarriers
⇒ frames, ,     groups of     blocks
⇒ is the transmitted signal tensor
⇒ is the channel tensor in the frequency domain

•



⇒compact and flexible formulation of the MIMO OFDM system
⇒can be easily extended to any other multi-carrier system

contains the first     columns of a DFT matrix of size 

System Model

channel impulse response
[NHdA17] K. Naskovska, M. Haardt, and A. L. F. de Almeida, “Generalized tensor contraction with application 

to Khatri-Rao Coded MIMO OFDM systems,“ in Proc. IEEE 7th Int. Workshop on Computational 
Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 286 - 290, Dec. 2017.

channel taps
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 Let us collect all channel coefficients for the        
-th transmit and all receive antennas

Channel Tensor (1)
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Channel Tensor (2)

 and now collecting all of the transmit antennas

⇒where 
• is a pivoting vector of length         containing all zeros and one 

at the         -th position   
•

Kronecker product between two tensors and yields
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 The generalized unfolding

⇒

Channel Tensor (3)

reorders the columns such that the faster increasing index is       instead of
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Data Transmission

 Data transmission using Khatri-Rao space-time (KRST) coding

⇒ the k-th transmitted block:

⇒spreading factor

Overall data to be transmitted in blocks

Unitary precoding matrix
Symbol matrix

KRST coding matrix, spatial code rate 

[SB02] N. D. Sidiropoulos and R. S. Budampati, “Khatri-Rao Space-Time codes,” IEEE Transactions on Signal 
Processing, vol. 50, no. 10, pp. 2396–2407, 2002.

converts
the k-th row into 
diagonal matrix
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Khatri-Rao coded signal tensor

 contains Khatri-Rao coded symbols
⇒ for each subcarrier 
⇒ the coding is proportional to the number of transmit antennas,
⇒ the generalized unfolding of the signal tensor is
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 can be expressed as

⇒by inserting the corresponding unfoldings of the channel and 
the signal tensor, we get

“generalized” unfolding of a 4-way constrained CP tensor


⇒depending on the available a priori knowledge at the receiver,
• channel estimation, symbol estimation, 

or joint channel and symbol estimation can be performed
• channel correlation on adjacent subcarriers can be exploited

Noiseless Received Signal
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Khatri-Rao Receiver

 From the tensor model, we get

⇒
⇒

• block diagonal
• left invertible
• known at the receiver

⇒

 Using the Least Squares – Khatri-Rao Factorization we can estimate

is a diagonal 
scaling matrix 

[RH10] F. Roemer and M. Haardt, “Tensor-based channel estimation (TENCE) and iterative refinements for two-
way relaying with multiple antennas and spatial reuse,” IEEE Transactions on Signal Processing, vol. 58, 
pp. 5720–5735, 2010.

[CCH+17] Y. Cheng, S. A. Cheema, M. Haardt, A. Weiss, and A. Yeredor, “Performance analysis of least-
squares Khatri-Rao factorization,“ in Proc. IEEE 7th Int. Workshop on Computational Advances in 
Multi-Sensor Adaptive Processing (CAMSAP), Curacao, Dutch Antilles, pp. 447 - 486, Dec. 2017.
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Resolving the Scaling Ambiguity



⇒with the knowledge of one row of the matrix
• equivalent to pilot symbols

⇒using less pilot symbols and applying channel interpolation 
techniques for OFDM

• spacing in the frequency domain
• spacing in the time domain
• with the prior knowledge of the pilot symbols and their positions, 

we obtain a pilot based channel estimate       by exploiting the 
channel correlation

•

data pilots

element-wise
division 
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Enhancement via Least Squares

 After the scaling ambiguity that affects the columns of       and      is 
resolved we can enhance these estimates based on least squares
⇒using the decoded symbols 

⇒

⇒ improve the estimate of the diagonal scaling matrix 

⇒ improve the estimate of the symbols 
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Comparison of the SER for 
different spacings of the pilot positions
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Comparison of the SER for 
different numbers of transmit and receive antennas
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Conclusions: Khatri-Rao Coded MIMO OFDM Systems 

 Tensor model for MIMO OFDM systems based on a double contraction 
between a channel tensor and a signal tensor
⇒provides a compact and flexible formulation of this 

Khatri-Rao coded MIMO OFDM system
⇒can be easily extended to any other multi-carrier schemes, 

such as GFDM or FBMC
⇒exploiting it at the receiver side leads to a tensor gain

 The proposed Khatri-Rao receiver
⇒has an improved performance in terms of the SER
⇒exploits the channel correlation between adjacent subcarriers 
⇒ requires the same amount of training symbols 

as traditional OFDM techniques
⇒can be extended to an iterative receiver if for an improved 

performance
⇒can be extended to a system with random coding matrices 
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Outline

 Tensor Algebra and Notation 
 Computation of Tensor Contractions via Generalized Unfoldings
 Double Contractions of Tensors to Represent Slice-wise Multiplications 

⇒ Element-wise Multiplication of Vectors and Matrices using Contraction
⇒ Slice-wise Multiplication of Tensors using Contraction

 Constrained CP model of PARAFAC2 derived via Double Contractions
 Applications to Multi-Carrier MIMO Systems in Wireless Communications

⇒ Khatri-Rao Coded MIMO OFDM Systems
⇒ MIMO OFDM Systems

 Conclusions
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Introduction and Motivation: MIMO OFDM Systems

 We propose a tensor model for MIMO OFDM system 
⇒based on the double contraction between a channel tensor and 

a signal tensor 
• no additional spreading

 This tensor model
⇒provides a compact and flexible formulation of the MIMO OFDM 

system
⇒exploiting it at the receiver side leads to a tensor gain
⇒exploits the channel correlation to reduce the number required pilot 

symbols (as compared to other tensor models)
⇒can be easily extended to any other multi-carrier system, 

such as GFDM or FBMC
[NHdA18] K. Naskovska, M. Haardt, and A. L. F. de Almeida, “Generalized Tensor Contractions for an Improved 

Receiver design in MIMO-OFDM Systems,“ in Proc. IEEE Int. Conference on Acoustics, Speech, and   
Signal Processing (ICASSP), Calgary, Alberta, Canada, pp. 3186 - 3190, Apr. 2018.
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System Model

 MIMO-OFDM communication system in the frequency domain
⇒ transmit antennas
⇒ receive antennas
⇒ subcarriers
⇒ frames 
⇒ is the signal tensor
⇒ is the channel tensor in the frequency domain

•



⇒compact and flexible formulation of the MIMO OFDM system
⇒can be easily extended to any other multi-carrier system

channel impulse response

contains the first     columns of DFT matrix of size 
channel taps
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Data transmission

 The transpose of the 3-mode unfolding of uncoded signal tensor               
is

contains the symbols transmitted via the      -th antenna
 Moreover, we assume that the symbol matrix consists of data and pilot 

symbols

⇒The matrix       contains zeros at the positions of the pilot symbols.
⇒The matrix       contains zeros at the positions of the data symbols.
⇒Pilots are sent only in the first frame with a subcarrier spacing of             

between two pilot symbols

data pilots
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OFDM Receivers

 Received signal

⇒constrained CP model
⇒degenerate CP model in all three modes (more challenging) 

 Goal 
⇒ jointly estimate the channel and the symbols
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ZF Receiver

 With the prior knowledge of the pilot symbols and their positions, we 
obtain a pilot based channel estimate               by exploiting the channel 
correlation

 Zero Forcing (ZF) Receiver
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denotes the    -th column of

Improved Receiver Design

 Alternatively, the channel and the symbols on each subcarrier can be 
estimated from 

⇒This sum can be resolved by imposing orthogonality constraints 
• Khatri-Rao Coding 

⇒ or in column-wise fashion

[NHA17] K. Naskovska, M. Haardt, and A. L. F. de Almeida, “Generalized tensor contraction with application to 
Khatri-Rao coded MIMO OFDM systems,” in Proc. IEEE 7th Int. Workshop on Computational 
Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 286 – 290, 2017.

where

[TVP94]  S. Talwar, M. Viberg, and A. Paulraj, “Blind estimation of multiple cochannel digital signals using an 
antenna array,” IEEE Signal Processing Letters, vol. 1, no. 2, pp. 29–31, 1994.

[TVP96]  ——, “Blind separation of synchronous co-channel digital signals using an antenna array. 
I. Algorithms,” IEEE Trans. Signal Process., vol. 44, no. 5, pp. 1184–1197, 1996.
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Iterative Least Squares with Projection (ILSP)

in each iteration
Symbols are estimated via 
LS and projected onto the 
finite alphabet

for each subcarrier

If the estimated symbol 
matrix has rank       , an 
update of the channel 
estimate will be computed 
in a LS sense
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Iterative Least Squares with Enumeration (ILSE)

Symbols are estimated 
based on enumeration
(exhaustive search)

If the estimated symbol 
matrix has rank       , an 
update of the channel 
estimate will be computed 
in a LS sense

in each iteration

for each subcarrier
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Recursive Least Squares with Projection (RLSP)

for each subcarrier
Symbols are estimated via 
LS and projected onto the 
finite alphabet

Recursive least squares 
estimate of the channel
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Recursive Least Squares with Enumeration (RLSE)

for each subcarrier

Symbols are estimated 
based on enumeration
(exhaustive search)

Recursive least squares 
estimate of the channel
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ZF, ILSP, ILSE, RLSP, and RLSE for K = 2 

Pedestrian A
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ZF, ILSP, ILSE, RLSP, and RLSE for K = 8 

Algorithm ILSP ILSE RLSP RLSE
Total Time [s] 2.815 6.910 7.962 4.810

Pedestrian A
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Comparison of ZF, RLSP, and RLSE 
for Different Antenna Configurations

Pedestrian A



Ilmenau University of Technology
Communications Research Laboratory 70

Conclusions: MIMO OFDM Systems (1)
 We present a tensor model for MIMO OFDM systems based on 

a double contraction between a channel tensor and a signal tensor
⇒provides a compact and flexible formulation of the MIMO OFDM 

system
⇒can be easily extended to other multi-carrier schemes, 

such as GFDM or FBMC
 This model facilitates the design of several types of receivers based on 

iterative LS and recursive LS (RLS) algorithms
⇒ ILSP and RLSP show a similar performance as the ZF algorithm
⇒ ISLE and RLSE based on enumeration, outperform the rest of the 

algorithms at the cost of increased complexity
⇒both recursive algorithms have less computational complexity
⇒ the RLSE algorithm does not need matrix inversion

• suitable for any configuration setup, even time-varying channels
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Conclusions: MIMO OFDM Systems (2)

 In the future,
⇒ recursive algorithms can be used to exploit the correlation of the 

channel tensor
⇒multiple unfoldings can be exploited sequentially to capture the tensor 

structure in the receiver design

 Exploitation of the sparse tensor structure of mmWave channels
⇒significant reduction of the pilot overhead

(semi-blind channel and symbol estimation)
⇒ increase of the spectral efficiency
⇒ reduction of the latency
⇒ facilitates fast tracking of rapidly varying channels
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Conclusions
 Slice-wise multiplication of two tensors 

⇒ is required in a variety of tensor decompositions
• PARAFAC2, PARATUCK2, …

⇒and is encountered in many applications
• biomedical data (EEG, MEG, etc.)
• multi-carrier MIMO systems

⇒provide a new tensor representation
• that is not based on a slice-wise (matrix) description

⇒can be represented by a double contraction
• efficiently calculated via generalized unfoldings
• leads to new tensor models that do not depend 

on the chosen unfolding 
• reveal the constrained CP tensor structure of the data model

 Can be exploited to derive improved receivers and/or 
improved (blind or semi-blind) model identification algorithms
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THANK YOU! 
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