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A (too?) General Model

(P) min{H(x1, x2, . . . , xp) : xi ∈ Rni}

H : Rn → (−∞,∞] proper.

n =
∑p

i=1 ni .

At each iteration of a block variables decomposition method an operation
involving only one of the block variables x1, x2, . . . , xp is performed.

The Alternating Minimization method sequentially minimizes H w.r.t.
each component in a cyclic manner.

Alternating Minimization At step k, given xk , the next iterate xk+1 is
computed as follows:
For i = 1 : p

xk+1
1 ∈ argmin

x1

H(x1, x
k
2 , . . . , x

k
p).

xk+1
2 ∈ argmin

x2

H(xk+1
1 , x2, x

k
3 , . . . , x

k
p).

...

xk+1
p ∈ argmin

xp
H(xk+1

1 , . . . , xk+1
p−1, xp).

Amir Beck - Technion Primal and Dual Variables Decomposition Methods in Convex Optimization



A (too?) General Model

(P) min{H(x1, x2, . . . , xp) : xi ∈ Rni}

H : Rn → (−∞,∞] proper.

n =
∑p

i=1 ni .

The Alternating Minimization method sequentially minimizes H w.r.t.
each component in a cyclic manner.

Alternating Minimization At step k , given xk , the next iterate xk+1 is
computed as follows:
For i = 1 : p

xk+1
1 ∈ argmin

x1

H(x1, x
k
2 , . . . , x

k
p).

xk+1
2 ∈ argmin

x2

H(xk+1
1 , x2, x

k
3 , . . . , x

k
p).

...

xk+1
p ∈ argmin

xp
H(xk+1

1 , . . . , xk+1
p−1, xp).

Amir Beck - Technion Primal and Dual Variables Decomposition Methods in Convex Optimization



Block Descent Methods

The AM method is just one example of a block descent method or
variables decomposition method.

Other variants replace for example the exact minimization step with
some kind of a descent operator.

General Block Descent Method
For i=1:p

xk+1
i = Ti (xk+1

1 . . . , xk+1
i−1 , x

k
i , x

k
i+1, . . . , x

k
p).

Ti : Rn → Rni - a descent operator (such as one step of a minimization
method)

Additional variants of the method consider different index selection
strategies other than cyclic (essentially cyclic,Gauss-Southwell)

Deterministic index selection strategies can be replaced by
randomized.
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Example 1 of AM: IRLS - Iteratively Reweighted Least
Squares

The model:

(N)
min s(y) +

∑m
i=1 ‖Aiy + bi‖2

s.t. y ∈ X ,

Ai ∈ Rki×n,bi ∈ Rki , i = 1, 2, . . . ,m.

s continuously differentiable over the closed and convex set X ⊆ Rn.

Examples:

l1-norm linear regression min ‖By − c‖1

Fermat-Weber problem

(FW ) min
m∑
i=1

ωi‖y − ai‖

l1-regularized least squares min ‖By − c‖2
2 + λ‖Dy‖1..
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IRLS - Iteratively Reweighted Least Squares

Wishful thinking...

Initialization: y0 ∈ X .
General Step (k = 0, 1, . . .):

yk+1 ∈ argmin
y∈X

{
s(y) +

1

2

m∑
i=1

‖Aiy + bi‖2

‖Aiyk + bi‖

}
.

Practical method

η-IRLS
Input: η > 0 - a given parameter. Initialization: y0 ∈ X .
General Step (k = 0, 1, . . .):

yk+1 ∈ argmin
y∈X

{
s(y) +

1

2

m∑
i=1

‖Aiy + bi‖2√
‖Aiyk + bi‖2 + η2

}
.
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IRLS - Literature

popular approach in robust regression (McCullagh, Nedler
83’)

applications in sparse recovery (Daubechies et al, 10’)

same as Weiszfeld’s method (from 1937) for solving the
Fermat-Weber problem (η = 0???)

Convergence results are known only for very specific
instances [Bissantz et. al. 08’(specific unconstrained
model, asymptotic linear rate of convergence), Daubechies
et al 10’(asy. linear rate, basis pursuit problem)]
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IRLS ⇔ AM

Auxiliary problem:

(N)
min hη(y, z) ≡ s(y) + 1

2

∑m
i=1

(
‖Aiy+bi‖2+η2

zi
+ zi

)
s.t. y ∈ X

z ∈ [η/2,∞)m,

.

Minimizing w.r.t. z implies that the problem is a smoothed version
of (N):

(Nη)
min s(y) +

∑m
i=1

√
‖Aiy + bi‖2

2 + η2

s.t. y ∈ X
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IRLS ⇔ AM

(yk , zk) - the k-th iterate of the AM method.

The z-step in AM: zi =
√
‖Aiyk + bi‖2 + η2

The y-step in AM:

yk+1 ∈ argmin
y∈X

{
s(y) +

1

2

m∑
i=1

‖Aiy + bi‖2√
‖Aiyk + bi‖2 + η2

}
.

The methods are equivalent given that the initial z0 is given by

[z0]i =
√
‖Aiy0 + bi‖2 + η2
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Example 2 of AM: A Composite Model

T ∗ = min {T (y) ≡ q(y) + r(Ay)} ,

q : Rn → R ∪ {∞} closed, proper, convex.

r : Rm → R real-valued convex function.

A popular penalized approach: Consider the problem

min
z,y
{q(y) + r(z) : z = Ay} .

Write a penalized version:

(C ) T ∗ρ = min
y,z

{
Tρ(y, z) = q(y) + r(z) +

ρ

2
‖z− Ay‖2

}

Employ the AM method.
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AM for solving (C)

Alternating Minimization for Solving (C)
Input: ρ > 0 - a given parameter.

Initialization: y0 ∈ Rn, z0 ∈ argmin
{
r(z) +

ρ

2
‖z− Ay0‖2

}
.

General Step (k=0,1,. . . ):

yk+1 ∈ argmin
y∈Rn

{
q(y) +

ρ

2
‖zk − Ay‖2

}
,

zk+1 = argmin
z∈Rm

{
r(z) +

ρ

2
‖z− Ayk+1‖2

}
.

Implementable in several important examples, e.g.,

min ‖Cx− d‖2
2 + ‖Lx‖1.

(prox of l1+solution of a linear system)

Amir Beck - Technion Primal and Dual Variables Decomposition Methods in Convex Optimization



AM for solving (C)

Alternating Minimization for Solving (C)
Input: ρ > 0 - a given parameter.

Initialization: y0 ∈ Rn, z0 ∈ argmin
{
r(z) +

ρ

2
‖z− Ay0‖2

}
.

General Step (k=0,1,. . . ):

yk+1 ∈ argmin
y∈Rn

{
q(y) +

ρ

2
‖zk − Ay‖2

}
,

zk+1 = argmin
z∈Rm

{
r(z) +

ρ

2
‖z− Ayk+1‖2

}
.

Implementable in several important examples, e.g.,

min ‖Cx− d‖2
2 + ‖Lx‖1.

(prox of l1+solution of a linear system)

Amir Beck - Technion Primal and Dual Variables Decomposition Methods in Convex Optimization



Example 3 of AM: k-means method in clustering

Input:

n points A = {a1, a2, . . . , an} ⊆ Rd .

k - number of clusters .

Clusters:

The idea is to partition the data A
into k subsets (clusters) A1, . . . ,Ak ,
called clusters.

For each l ∈ {1, . . . , k}, the cluster
Al is represented by its so-called
center xl .

The clustering problem: determine k
cluster centers x1, x2, . . . , xk such that
the sum of distances from each point
ai to a nearest cluster center xl is
minimized.

min
x1,...,xk

n∑
i=1

min
l=1,2,...,k

‖ai − xl‖2.
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Clustering: AM=k-means

Using the trick:

min{b1, . . . , bk} = min{bTy : y ∈ ∆k}.

where ∆k = {y ∈ Rk : eTy = 1, y ≥ 0}, we can reformulate:

min
∑n

i=1

∑k
l=1 y

i
l ‖ai − xl‖2

s.t. x1, . . . , xn ∈ Rd ,
y1, . . . , yn ∈ ∆k ,

k-means. repeat:

Assignment step. assign each point ai to closest cluster center:

Al = {i : ‖ai − xl‖ ≤ ‖ai − xj‖ for all j = 1, . . . , k}, l = 1, 2, . . . , k.

Update step. Cluster centers are averages: xl = 1
|Al |

∑
i∈Al

ai .
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Example 4 of AM: proximal point method

Consider the model:

min
x

f (x) (f : Rn → (−∞,∞])

Rewrite the problem as follows:

min
x,y

f (x) +
c

2
‖x− y‖2

Same problem since minimizing w.r.t. y yields y = x.

The alternating minimization method is the proximal point method:

xk+1 = argmin
x

{
f (x) +

c

2
‖x− xk‖2

}
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Example of Inexact Block Method: RSTLS

Linear inverse problem: Given an approximate linear system

Ax ≈ b

find a “good” estimate of x.

Least squares:

x̂LS = argmin
x
‖Ax− b‖2 = (ATA)−1ATb

assumes A full column rank, requires regularization?

From LS to TLS: A unknown
Least Squares (LS) Total Least Squares (TLS)

min
w,x
‖w‖2

s.t.
Ax = b + w

min
w,E,x
‖E‖2 + ‖w‖2

s.t.
(A + E)x = b + w

minimal perturbation minimal perturbation to both
to rhs which makes rhs and lhs matrix which
this linear system makes the system consistent
consistent (Golub, Van Loan (80))
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From TLS to RSTLS

The total least squares (TLS) problem:

minx,E ‖(A + E)x− b‖2 + ‖E‖2

The structured TLS (STLS) problem: E has some linear
structure – E =

∑p
i=1 yiEi

minx,y ‖(A +
∑p

i=1 yiEi )x− b‖2 + ‖Dy‖2

The Regularized STLS (RSTLS) problem: regularize x

minx,y ‖(A +
∑p

i=1 yiEi )x− b‖2 + ‖Dy‖2 + g(x)

where g is extended real-valued (can also account for constraints)

A schematic block descent method on x and y:

yk+1 = argmin
y
‖(A +

∑p
i=1 yiEi )xk − b‖2 + ‖Dy‖2

xk+1 ≈ argmin
x
‖(A +

∑p
i=1 y

k+1
i Ei )x− b‖2 + g(x).

Problem in y - solution of a (small?) linear system. Problem in y -
approximate “solution” of RLS (smooth+nonsmooth?)
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Why Block Descent Methods?

Simple and cheap updates at each iteration - suitable for
large-scale applications.

Allow larger step-sizes at each iteration.

In some nonconvex settings - results with better quality
solutions.
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Convergence?? well...

Convergence of the AM method is not always guaranteed.

Powell’s example (73’):

ϕ(x , y , z) = −xy − yz − zx + [x − 1]2
+ + [−x − 1]2

+

+[y − 1]2
+ + [−y − 1]2

+ + [z − 1]2
+ + [−z − 1]2

+.

differentiable and nonconvex

Fixing y , z , it is easy to show that that

argmin
x

ϕ(x , y , z) =

{
sgn(y + z)(1 + 1

2 |y + z |) y + z 6= 0
[−1, 1] y + z = 0

Similar formulas for minimizing w.r.t. y and z .
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Powell’s Example

Start with
(
−1− ε, 1 + 1

2ε,−1− 1
4ε
)
.

First six iterations(
1 +

1

8
ε, 1 +

1

2
ε,−1− 1

4
ε

)
(

1 +
1

8
ε,−1− 1

16
ε,−1− 1

4
ε

)
(

1 +
1

8
ε,−1− 1

16
ε, 1 +

1

32
ε

)

(
−1− 1

64
ε,−1− 1

16
ε, 1 +

1

32
ε

)
(
−1− 1

64
ε, 1 +

1

128
ε, 1 +

1

32
ε

)
(
−1− 1

64
ε, 1 +

1

128
ε,−1− 1

256
ε

)
We are essentially back at the first point, but with 1
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Typical Convergence Result of AM

x̄ ∈ dom(H) is a coordinate-wise minimum if for any i ,

x̄i ∈ argmin
xi

H(x̄1, . . . , x̄i−1, xi , x̄i+1, . . . , x̄p)

Theorem (e.g., [Bertsekas, ’99]) If

H proper, closed, continuous over its domain;

for each x̄ ∈ dom(H) and i , the problem
minxi H(x̄1, . . . , x̄i−1, xi , x̄i+1, . . . , x̄p) attains a unique minimizer;

level sets of H are bounded,

Then the sequence generated by the AM method is bounded and its limit
points are coordinate-wise minima.
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The Failure of Convexity

Unfortunately, in the absence of differentiability, even convexity is
not enough to guarantee convergence to an optimal or even
stationary point.

Example:

f (x1, x2) = |3x1+4x2|+|−x1+2x2|

• All the points on the
emphasized line
{(−4α, 3α) : α ∈ R} are
coordinate-wise minima, and only
(0,0) is a global minimum.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

Any block descent method might converge to the non-global solution.
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The Composite Model

smooth+separable convex

The composite model

(P) min f (x1, x2, . . . , xp) +

g(x)︷ ︸︸ ︷
p∑

i=1

gi (xi )︸ ︷︷ ︸
H(x1,...,xp)

f : Rn → R - continuously differentiable.

gi : Rni → (−∞,∞] - closed, proper, convex.

H with bounded level sets.

Main property: A coordinate-wise minimum of (P) is a stationary point.

−∇i f (x) ∈ ∂gi (x), i = 1, 2, . . . , p.

Corollary: Under uniqueness, limit points of AM are stationary points.
Theorem [generalization of Grippo and Sciandrone ’00]: convergence to
optimal points is guaranteed if uniqueness is replaced by convexity of f .
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Examples

Clustering:
min

∑n
i=1

∑k
l=1 y

i
l ‖ai − xl‖2

s.t. x1, . . . , xn ∈ Rd ,
y1, . . . , yn ∈ ∆k ,

Here:

f (x, y) =
n∑

i=1

k∑
l=1

y i
l ‖ai − xl‖2, g1(x) ≡ 0, g2(y) =

n∑
i=1

δ∆k
(yi )

RSTLS:

min
x,y
‖(A +

∑p
i=1 yiEi )x− b‖2 + ‖Dy‖2 + g(x)

Here:

f (x, y) = ‖(A +
∑p

i=1 yiEi )x− b‖2 + ‖Dy‖2, g1(x) = g(x), g2(y) ≡ 0
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Types of Steps in Block Descent Methods

General Block Descent Method

pick an index ik ∈ {1, 2, . . . , p}
xk+1
ik

= Tik (xk1 . . . , x
k
ik−1, x

k
ik
, xkik+1, . . . , x

k
p), xk+1

j = xkj , j 6= ik .

Two methods for solving the composite model (f smooth, g convex)

min{f (x) + g(x)}

1 Conditional Gradient (linearize)

p(xk) ∈ argmin
p

{
〈∇f (xk),p〉+ g(p)

}
xk+1 = xk + tk(p(xk)− xk) (tk ∈ [0, 1])

2 Proximal Gradient (linearize and Regularize)

xk+1 = argmin
x

{
〈∇f (xk), x〉+

1

2tk
‖x− xk‖2 + g(x)

}
or xk+1 = proxtkg (xk − tk∇f (xk))
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Types of Steps in Block Descent Methods

Moreau’s proximal mapping:

proxh(x) = argmin

{
h(u) +

1

2
‖u− x‖2

}
.

Block Proximal Gradient

xk+1
ik

= proxtkgik

(
xkik − tk∇ik f (xk)

)
xk+1
j = xkj , j 6= ik

gi ≡ 0 - block gradient descent, gi = δXi - block projected gradient.

Block Conditional Gradient

pk
ik ∈ argminpik

∈domgik

{
〈∇ik f (xk),pik 〉+ gik (pik )

}
,

xk+1
ik

= xkik + tk(pk
ik − xkik )

xk+1
j = xkj , j 6= ik
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Rates of Convergence – the Non-Block Case

H∗ = min{H(x) ≡ f (x) + g(x)}
Proximal gradient xk+1 = proxtkg (xk − tk∇f (xk))
g extended real-valued proper closed and convex

(f convex C 1,1) [B. Teboulle 09’]

H(xk)− H∗ = O(1/k)

(f convex C 1,1) [B. Teboulle 09’]

H(xk)− H∗ = O(1/k2)

accelerated version (FISTA) xk+1 = proxtkg (yk − tk∇f (yk)). Other
multi-step methods exist (Tseng ’10, Nesterov ’13)
(f strongly convex C 1,1)

H(xk)− H∗ = O(qk), q ∈ (0, 1)

(f nonconvex C 1,1) limit points are stationary points. O(1/
√
k) rate

of optimality measure Gs(xk) = 1
s ‖x

k − proxsg (xk − s∇f (xk))‖ to 0.
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Rates of Convergence - Non-Block Conditional Gradient

H∗ = min{H(x) ≡ f (x) + g(x)}

Conditional Gradient
xk+1 = xk + tk(p(xk)− xk),p(xk) ∈ argmin

p
〈{∇f (xk),p〉+ g(p)}

g extended real-valued proper closed and convex

Mostly useful when the prox is difficult to compute.

O(1/k) rate of convergence in the original Frank-Wolfe paper [56’]
for g=indicator of polyhedral sets. [Levitin and Polyak ’66] -
extension to arbitrary compact convex sets. Extension to general g
[Bach, 15’]

Bad news

Cannon and Culum [’68] – O(1/k) is tight even for strongly convex
functions.
Unknown if the method can be accelerated.

O(1/
√
k) rate of the optimality measure

S(x) = 〈∇f (x), x− p(x)〉+ g(x)− g(p(x))
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functions.
Unknown if the method can be accelerated.

O(1/
√
k) rate of the optimality measure

S(x) = 〈∇f (x), x− p(x)〉+ g(x)− g(p(x))
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Underlying Assumptions

f is convex (most of the time...)

∇f is block-coordinate-wise Lipschitz continuous with local
Lipschitz constants Li :

‖∇i f (x + Uihi )−∇i f (x)‖ ≤ Li‖hi‖, for every hi ∈ Rni .

(consequently) ∇f is Lipschitz continuous. Its constant is denoted
by L.

‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖ for every x, y ∈ Rn.

S = {x : F (x) ≤ F (x0)} is compact and we denote

R(x0) ≡ max
x∈Rn

max
x∗∈X∗

{‖x− x∗‖ : F (x) ≤ F (x0)} .
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Summary of Rates of Convergence

Cyclic Randomized
Method NA A NA A

Block PG X[1,6,7] ? [1] X[2,3] X[2,3]
Block CG X[4] x X[5] x

Cyclic – the index ik is chosen by the order 1, 2, . . . , p, 1, 2, . . .. Also
covers cyclic shuffle

Randomized – the index ik is chosen at random from {1, 2, . . . , p}
at each iteration.

A – accelerated O(1/k2) result. NA – non-accelerated O(1/k)
result.

[1] = [B. Tetruashvili ’13] ?= unconstrained setting [2] = [Fercoq,
Richtarik ’13], [3] = [Lin, Lu, Xiao ’15] [4] = [B., Pauwels, Sabach
’15], [5] = [Lacoste-Julien, Jaggi and Schmidt ’13], [6] = [Shefi,
Teboulle ’16], [7]=[Hong, Wang, Razaviyayn, Luo ’15]

Constants unfortunately depend on L or max{L1, L2, . . . , Lp}.
Possible to prove O(1/

√
k) rate of convergence of the optimality

measures to 0 in the nonconvex case and O(1/k) in the convex case.
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Deterministic Vs. Randomized

The constants in the deterministic efficiency estimates are worse
than the randomized versions.

Not consistent with the practical performance.
Analysis of the randomized methods is usually much simpler.
Sometimes even a simple adaptation of the non-block analysis.

Gradient Method
(xk+1 = xk − 1

L∇f (xk))

A. Sufficient
decrease:f (xk)− f (xk+1) ≥
1

2L‖∇f (xk)‖2

B. Subgradient inequality+CS
f (xk)− f (x∗) ≤ ∇f (xk)T (xk − x∗) ≤
R‖f (xk)‖
A+B ⇒
f (xk)−f (xk+1) ≥ 1

2LR2 (f (xk)−f (x∗))2

Lemma: ak − ak+1 ≥ γa2
k implies

ak ≤ 1
γk

f (xk)− f ∗ ≤ 2LR2

k

Randomized Block Gradient
(xk+1 = xk − 1

L∇ik f (xk))

A. Sufficient
decrease:f (xk)− f (xk+1) ≥

1
2Lik
‖∇ik f (xk)‖2 ≥ 1

2Lmax
‖∇ik f (xk)‖2

E(f (xk))− E(f (xk+1)) ≥
1

2pLmax
‖∇f (xk)‖2

B. The same

A+B ⇒ E(f (xk))− E(f (xk+1)) ≥
1

2pLmaxR2 (E(f (xk))− f ∗)2

E(f (xk))− f ∗ ≤ 2pLmaxR
2

k
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Numerical Results On Synthetic Data

We solve the problem

min
‖x‖∞≤1

1

2
(x− y)TQ(x− y), (1)

where

y ∈ R100 Q ∈ R100×100.

Generation of Q: Q = 1
200 XTX where each component of

X ∈ R200×100 is generated by N(0, 1).

The entries of y are generated by N(0, 1).

We compare the Conditional Gradient (CG), its random block
version (RBDG) and its cyclic block version (CBCG) with the three
different stepsize strategies based on 1000 randomly generated
instances of problem.

The central line is the median over the 1000 runs and the ribbons
show 98%, 90%, 80%, 60% and 40% quantiles.

k - number of effective passes through all the coordinates.

Amir Beck - Technion Primal and Dual Variables Decomposition Methods in Convex Optimization



Comparison of Stepsize Rules and Methods

Adaptive step Exact line−search Predefined step
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Results on Structural SVM
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Results on the AM method with p = 2

More difficult to analyze in the absence of strong convexity -
distances between consecutive iterates cannot be controlled.

On the other hand, logic dictates that if possible, exact minimization
is better.

Can theory substantiate this intuition?

Yes, at least for p = 2...
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The General Minimization Problem

(P): min {H(y, z) ≡ f (y, z) + g1(y) + g2(z) : y ∈ Rn1 , z ∈ Rn2}

A. g1 : Rn1 → (−∞,∞], g2 : Rn2 → (−∞,∞] are closed, proper and
convex

B. f - convex and continuously differentiable function over
dom g1 × dom g2.
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Block Notation

x = (y, z)

g : Rn1 × Rn2 → (−∞,∞] is defined by
g(x) = g(y, z) ≡ g1(y) + g2(z).

In this notation: H(x) = f (x) + g(x)

∇1f (x) - gradient of f w.r.t y and ∇2f (x) - gradient w.r.t to z.
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Further Assumptions

C. ∇1f (uniformly) Lipschitz continuous w.r.t. to y over dom g1 with
constant L1 ∈ (0,∞):

‖∇1f (y + d1, z)−∇1f (y, z)‖ ≤ L1‖d1‖, y, y + d1 ∈ dom g1, z ∈ dom g2

D. ∇2f (uniformly) Lipschitz continuous w.r.t. to z over dom g2 with
constant L2 ∈ (0,∞]:

‖∇2f (y, z + d2)−∇1f (y, z)‖ ≤ L2‖d2‖, y ∈ dom g1, z, z + d2 ∈ dom g2

When L2 =∞, [D] is meaningless!
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The Alternating Minimization Method

Initialization: y0 ∈ dom g1, z0 ∈ dom g2 such that z0 ∈
argmin

z∈Rn2

f (y0, z) + g2(z).

General Step (k=0,1,. . . ):

yk+1 ∈ argmin
y∈Rn1

f (y, zk) + g1(y),

zk+1 ∈ argmin
z∈Rn2

f (yk+1, z) + g2(z).

E. The optimal set of (P), denoted X ∗ is nonempty. The minimization
problems

min
z∈Rn2

f (ỹ, z) + g2(z), min
y∈Rn1

f (y, z̃) + g1(y)

have minimizers for any ỹ ∈ dom g1, z̃ ∈ dom g2.

Note: A “half” step is performed before invoking the method.
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Sublinear Rate of Convergence of AM

Theorm. For all n ≥ 2

H(xn)− H∗ ≤ max

{(
1

2

) n−1
2

(H(x0)− H∗),
8 min{L1, L2}R2

n − 1

}
.

An ε-optimal solution is obtained after at most

max

{
2

ln(2)
(ln(H(x0)− H∗) + ln(1/ε)),

8 min{L1, L2}R2

ε

}
+ 2

iterations.

constant depends on min{L1, L2} - an optimistic result. The rate is
dictated by the “best” function.

weak dependence on global Lipschitz constants.
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IRLS - Sublinear Rate of Convergence

(A)
min hη(y, z) ≡ s(y) + 1

2

∑m
i=1

(
‖Aiy+bi‖2+η2

zi
+ zi

)
s.t. y ∈ X

z ∈ [η/2,∞)m,

.

L1 = L∇s +
1

η
λmax

(
m∑
i=1

AT
i Ai

)
L2 = ∞

Sublinear rate of convergence of IRLS:

Sη(yn)− S∗η ≤ max

{(
1

2

) n−1
2

(Sη(y0)− S∗η ),
8L1R

2

n − 1

}
.
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Asymptotic Rate of Convergence

Theorem. There exists K > 0 such that

Sη(yn)− S∗η ≤
48R2

η(n − K )

for all n ≥ K + 1.

Rate does not depend on the data (s,Ai ,bi ).

Possibly explains the fast empirical convergence of IRLS.
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Duality?

Main Question: How does a dual-based variables
decomposition method look like?
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The Model

min
x∈E

{
f (x) +

∑p
i=1 ψi (x)

}
,

f : E→ (−∞,∞] is a closed, proper extended valued σ-strongly
convex function.

ψi : E→ (−∞,∞] (i = 1, 2, . . . , p) closed, proper extended
real-valued convex.

ri(dom f ) ∩ (∩pi=1 ri(domψi )) 6= ∅.
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Functional Decomposition - the Idea

At each iteration of a functional decomposition method an operation involv-
ing only at most one of the functions ψi is performed.

Suppose that either

problems of the form minx f (x) + ψi (x) + 〈a, x〉 can be easily solved.

or

proxψi
can be easily computed.

Example of functional decomposition methods are incremental
(sub)gradient methods (Kibradin [80’], Luo and Tseng[94’], Grippo [94’],
Bertsekas [97’], Solodov [98’], Nedic and Bertsekas [00’,01’,10’],
incremental subgradient-proximal (Bertsekas [10’]) and certain variants of
ADMM (Gabay and Mercier) and dual ADMM.
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Example: 1D total variation denoising

Given a noisy measurements vector y, we want to find a “smooth” vector
x which is the solution to

min
x

1

2
‖x− y‖2 + λ

n−1∑
i=1

|xi − xi+1|︸ ︷︷ ︸
ψ(x)

.

Equivalent to finding the prox of the TV function.

ψ has no useful separability properties.

However, we can decompose ψ as ψ = ψ1 + ψ2 where

ψ1(x) = λ

bn/2c∑
i=1

|x2i−1 − x2i |

ψ2(x) = λ

b(n−1)/2c∑
i=1

|x2i − x2i+1|

proxψ1
,proxψ2

can be easily computed since they are separable w.r.t.
pair of variables (e.g., ψ1 is separable w.r.t. to {x1, x2}, {x3, x4}, . . .).
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The Dual Problem

The dual problem of (P) is

(D) max
{
q(y) ≡ −f ∗

(
−
∑p

j=1 yj
)
−
∑p

j=1 ψ
∗
j (yj)

}

In minimization form:

min
y∈Ep

{
H(y) ≡ F (y) +

∑p
i=1 Ψi (yi )

}
.

with F (y) ≡ f ∗
(
−
∑p

j=1 yj
)

- a convex C 1,1
p/σ function.

Ψj(yj) ≡ ψ∗j (yj) - closed, proper, convex.

Dual block variables decomposition = primal functional decomposition
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Two Dual Block Steps

Given ȳ1, . . . , ȳp, the objective is to compute ȳnew
i - a new value of the

ith component by employing one of the following steps:

dual exact minimization step.

ynew
i ∈ argmin

{
f ∗
(
−
∑p

j=1,j 6=i ȳj − yi
)

+ ψ∗i (yi )
}
.

the value of ȳi is not being used.

dual proximal gradient step.

ynew
i = proxσψ∗i (ȳi + σ∇f ∗(−

∑p
j=1 ȳj)).
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Primal Representations of the Dual Block Steps:

Using Moreau decomposition and some conjugate/prox calculus...

Primal Representation of the Dual Exact Minimization Step:

ỹi =
∑

j 6=i ȳj ,

x̄ ∈ argmin
x∈E

{f (x) + ψi (x) + 〈ỹi , x〉} ,

ynew
i ∈ ∂ψi (x̄).

Primal Representation of the Dual Proximal Gradient Step:

x̄ = argmin
x∈E

{
f (x) + 〈

∑p
j=1 ȳj , x〉

}
,

ȳnew
i = ȳi + σx̄− proxψi/σ

(
ȳi
σ

+ x̄

)
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Dual Cyclic Alternating Minimization Method (DAM-C)

Initialization. y0 = (y0
0, y

0
1, . . . , y

0
m) ∈ Ep.

General Step (k = 0, 1, 2, 3, . . .).

Set yk,0 = yk .

For i = 0, 1, . . . , p − 1
Define yk,i+1 as follows:

xk,i ∈ argmin
x∈E

{
f (x) + ψi+1(x) + 〈

∑p
j=1,j 6=i+1 yk,i

j , x〉
}

yk,i+1
j

{
∈ ∂ψi+1(xk,i ) j = i + 1,

= yk,i
j j 6= i + 1.

Set yk+1 = yk,p and xk = xk,0.

If f ∈ C 1, then the update rule for yk,i+1 can be replaced by

yk,i+1
j =

{
−∇f (xk,i )−

∑p
j=1,j 6=i+1 yk,i

j j = i + 1,

yk,i
j j 6= i + 1.
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Dual Cyclic Block Proximal Gradient Method (DBPG-C)

Initialization. (y0
0, y

0
1, . . . , y

0
m) ∈ Ep.

General Step (k = 0, 1, 2, 3, . . .).

Set yk,0 = yk .

For i = 0, 1, . . . ,m − 1
Define yk,i+1 as follows

xk,i = argmin
x∈E

{
f (x) + 〈

∑p
j=1 yk,i

j , x〉
}
,

yk,i+1
j =

 yk
i+1 + σxk,i − proxψi+1/σ

(
yk,i
i+1

σ + xk,i
)

j = i + 1,

yk,i
j , j 6= i + 1.

Set yk+1 = yk,m and xk = xk,0.
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Rate of Convergence of the Primal Sequence

The rates of convergence of the dual objective function are already
known.

Does it imply corresponding rates of convergence of the primal
sequence?

YES!

The primal-dual relation. Let ȳ satisfy ȳj ∈ domψ∗j for any j ∈
{1, 2, . . . , p}. Let x̄ be defined by either

x̄ ∈ argmin
x

{
f (x) + 〈

∑p
i=j ȳj , x〉

}
or

x̄ ∈ argmin
x

{
f (x) + ψi (x) + 〈

∑p
j=1,j 6=i ȳj , x〉

}
for some i ∈ {1, 2, . . . , p}. Then

‖x̄− x∗‖2 ≤ 2

σ
(qopt − q(ȳ))
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Amir Beck - Technion Primal and Dual Variables Decomposition Methods in Convex Optimization



Rate of Convergence of the Primal Sequence

The rates of convergence of the dual objective function are already
known.

Does it imply corresponding rates of convergence of the primal
sequence? YES!

The primal-dual relation. Let ȳ satisfy ȳj ∈ domψ∗j for any j ∈
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}
for some i ∈ {1, 2, . . . , p}. Then

‖x̄− x∗‖2 ≤ 2

σ
(qopt − q(ȳ))
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Rates of Convergence of Functional Decomposition
Methods

method complexity result remarks

DBPG-C ‖xk − x∗‖2 ≤ 2C1

σ(k+1) Ψ∗i indicators, general m

DBPG-C ‖xk − x∗‖2 ≤ 2C2

σ(k+1) general Ψi and m

DBPG-R E(‖xk − x∗‖2) ≤ 2m
σ(m+k)C3 general Ψi and m

DAM-C ‖xk − x∗‖2 ≤ 2C4

σk m = 2
DAM-C ‖xk − x∗‖2 ≤ 2C5

σ(k+1) general m and ψi

C1 =
2m [(2m + 1)R + σM]2

σ

C2 = 2σmG 2
maxR

2 max

{
2

σmG 2
maxR2

− 2, qopt − q(y0), 2

}
C3 =

1

2σ
min

y∗∈Y∗
‖y0 − y∗‖2 + qopt − q(y0),

C4 = 3 max

{
qopt − q(y0),

1

σ
R2

}
,

C5 =
2m3R2 max

{
2σ

m3R2 − 2, qopt − q(y0), 2
}

σ
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Numerical Example: Isotropic 2D TV denoising

TV denoising:

min
x∈Rm×n

1

2
‖x− b‖2

F + θ · TVI (x)

Isotropic TV:

x ∈ Rm×n TVI =
∑m−1

i=1

∑n−1
j=1

√
(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

+
∑m−1

i=1 |xi,n − xi+1,n|+
∑n−1

j=1 |xm,j − xm,j+1|,

Chambolle, Pock[15’] : anisotropic (l1 − l1), decomposition intro
rows and columns (two functions).
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Decomposition of Isotropic TV

TVI (x) =
∑m

i=1

∑n
j=1

√
(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

=
∑

k∈K1

∑
(i,j)∈Dk

√
(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

+
∑

k∈K2

∑
(i,j)∈Dk

√
(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

+
∑

k∈K3

∑
(i,j)∈Dk

√
(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

= ψ1(x) + ψ2(x) + ψ3(x).

Dk - indices of the k diagonal.

Ki ≡
{
k ∈ {−(m − 1), . . . , n − 1} : (k + 1− i) mod 3 = 0

}
i = 1, 2, 3.

Using the separability of ψi , computation of proxψi
is simple.
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Illustration

ψ1 ψ2 ψ3
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Numerical Comparison

30 iterations, λ = 0.5.
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In the first 100 iterations DAM-C is better than FISTA. However, after
“enough” runs, FISTA wins...
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Random Versus Deterministic

p = 3 p = 30
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Almost the same performance, with a slight advantage to the cyclic rule.
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