Cutting planes in mixed integer programming

Wei-Kun Chen
School of Mathematics and Statistics
Beijing Institute of Technology

$$
\text { January 6, } 2023
$$

Agenda

(1) Background on cuts
(2) Mixing cuts
(3) Sequentially lifted cuts

Agenda

(1) Background on cuts
(2) Mixing cuts
(3) Sequentially lifted cuts

Mixed integer programming (MIP)

$$
\begin{array}{ll}
\min _{x, y} & c^{\top} x+g^{\top} y \\
\text { s.t. } & A x+B y \leq d, \\
& (x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{m} .
\end{array}
$$

- Applications: supply chain, electrical power, finance, transportation, work force management ...
- Algorithm: branch-and-cut.

An MIP is indeed an LP

$$
\begin{aligned}
& \min \left\{c^{\top} x+g^{\top} y:(x, y) \in \mathcal{X}\right\} \Longleftrightarrow \\
& \min \left\{c^{\top} x+g^{\top} y:(x, y) \in \operatorname{conv}(\mathcal{X})\right\} \\
& \triangleright \mathcal{X}= \\
&\left\{(x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{m}: A x+B y \leq d\right\} \\
& \bullet \operatorname{conv}(\mathcal{X})=\left\{(x, y) \in \mathbb{R}_{+}^{n+m}: \bar{A} x+\bar{B} y \leq \bar{d}\right\}
\end{aligned}
$$

An MIP is indeed an LP

$\min \left\{c^{\top} x+g^{\top} y:(x, y) \in \mathcal{X}\right\} \Longleftrightarrow$

$$
\min \left\{c^{\top} x+g^{\top} y:(x, y) \in \operatorname{conv}(\mathcal{X})\right\}
$$

- $\mathcal{X}=\left\{(x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{m}: A x+B y \leq d\right\}$.
- $\operatorname{conv}(\mathcal{X})=\left\{(x, y) \in \mathbb{R}_{+}^{n+m}: \bar{A} x+\bar{B} y \leq \bar{d}\right\}$.

Two difficulties:

- Computing $\operatorname{conv}(\mathcal{X})$ is hard.
- $\bar{A} x+\bar{B} y \leq \bar{d}$ is potentially huge.

An MIP is indeed an LP

$$
\begin{aligned}
& \min \left\{c^{\top} x+g^{\top} y:(x, y) \in \mathcal{X}\right\} \Longleftrightarrow \\
& \min \left\{c^{\top} x+g^{\top} y:(x, y) \in \operatorname{conv}(\mathcal{X})\right\} \\
& \bullet \mathcal{X}= \\
&\left\{(x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{m}: A x+B y \leq d\right\} \\
& \operatorname{conv}(\mathcal{X})=\left\{(x, y) \in \mathbb{R}_{+}^{n+m}: \bar{A} x+\bar{B} y \leq \bar{d}\right\}
\end{aligned}
$$

Two difficulties:

- Computing $\operatorname{conv}(\mathcal{X})$ is hard.
- $\bar{A} x+\bar{B} y \leq \bar{d}$ is potentially huge.

Cutting plane algorithm

(1) Solve the linear programming (LP) relaxation problem to obtain its solution $\left(x^{*}, y^{*}\right)$.
(2) (i) If $\left(x^{*}, y^{*}\right)$ satisfies the integer constraint

$$
x^{*} \in \mathbb{Z}_{+}^{n},
$$

stop with the optimal solution $\left(x^{*}, y^{*}\right)$.
(ii) Otherwise, find some valid inequalities $\left(\alpha^{\top} x+\beta^{\top} y \leq \gamma, \forall(x, y) \in \mathcal{X}\right)$ violated by (x^{*}, y^{*}) (cuts). Add these cuts to the problem and solve the LP again.

Cutting plane algorithm

(1) Solve the linear programming (LP) relaxation problem to obtain its solution $\left(x^{*}, y^{*}\right)$.
(2) (i) If $\left(x^{*}, y^{*}\right)$ satisfies the integer constraint

$$
x^{*} \in \mathbb{Z}_{+}^{n},
$$

stop with the optimal solution $\left(x^{*}, y^{*}\right)$.
(ii) Otherwise, find some valid inequalities $\left(\alpha^{\top} x+\beta^{\top} y \leq \gamma, \forall(x, y) \in \mathcal{X}\right)$ violated by (x^{*}, y^{*}) (cuts). Add these cuts to the problem and solve the LP again.

Cutting plane algorithm

(1) Solve the linear programming (LP) relaxation problem to obtain its solution $\left(x^{*}, y^{*}\right)$.
(2) (i) If $\left(x^{*}, y^{*}\right)$ satisfies the integer constraint

$$
x^{*} \in \mathbb{Z}_{+}^{n},
$$

stop with the optimal solution $\left(x^{*}, y^{*}\right)$.
(ii) Otherwise, find some valid inequalities $\left(\alpha^{\top} x+\beta^{\top} y \leq \gamma, \forall(x, y) \in \mathcal{X}\right)$ violated by (x^{*}, y^{*}) (cuts). Add these cuts to the problem and solve the LP again.

Cutting plane algorithm

(1) Solve the linear programming (LP) relaxation problem to obtain its solution $\left(x^{*}, y^{*}\right)$.
(2) (i) If $\left(x^{*}, y^{*}\right)$ satisfies the integer constraint

$$
x^{*} \in \mathbb{Z}_{+}^{n},
$$

stop with the optimal solution $\left(x^{*}, y^{*}\right)$.
(ii) Otherwise, find some valid inequalities $\left(\alpha^{\top} x+\beta^{\top} y \leq \gamma, \forall(x, y) \in \mathcal{X}\right)$ violated by (x^{*}, y^{*}) (cuts). Add these cuts to the problem and solve the LP again.

Cutting plane algorithm

(1) Solve the linear programming (LP) relaxation problem to obtain its solution $\left(x^{*}, y^{*}\right)$.
(2) (i) If $\left(x^{*}, y^{*}\right)$ satisfies the integer constraint

$$
x^{*} \in \mathbb{Z}_{+}^{n},
$$

stop with the optimal solution $\left(x^{*}, y^{*}\right)$.
(ii) Otherwise, find some valid inequalities $\left(\alpha^{\top} x+\beta^{\top} y \leq \gamma, \forall(x, y) \in \mathcal{X}\right)$ violated by (x^{*}, y^{*}) (cuts). Add these cuts to the problem and solve the LP again.

Cutting plane algorithm

(1) Solve the linear programming (LP) relaxation problem to obtain its solution $\left(x^{*}, y^{*}\right)$.
(2) (i) If $\left(x^{*}, y^{*}\right)$ satisfies the integer constraint

$$
x^{*} \in \mathbb{Z}_{+}^{n},
$$

stop with the optimal solution $\left(x^{*}, y^{*}\right)$.
(ii) Otherwise, find some valid inequalities $\left(\alpha^{\top} x+\beta^{\top} y \leq \gamma, \forall(x, y) \in \mathcal{X}\right)$ violated by (x^{*}, y^{*}) (cuts). Add these cuts to the problem and solve the LP again.

Cutting plane algorithm

(1) Solve the linear programming (LP) relaxation problem to obtain its solution $\left(x^{*}, y^{*}\right)$.
(2) (i) If $\left(x^{*}, y^{*}\right)$ satisfies the integer constraint

$$
x^{*} \in \mathbb{Z}_{+}^{n},
$$

stop with the optimal solution $\left(x^{*}, y^{*}\right)$.
(ii) Otherwise, find some valid inequalities $\left(\alpha^{\top} x+\beta^{\top} y \leq \gamma, \forall(x, y) \in \mathcal{X}\right)$ violated by (x^{*}, y^{*}) (cuts). Add these cuts to the
 problem and solve the LP again.

Cutting plane algorithm

(1) Solve the linear programming (LP) relaxation problem to obtain its solution $\left(x^{*}, y^{*}\right)$.
(2) (i) If $\left(x^{*}, y^{*}\right)$ satisfies the integer constraint

$$
x^{*} \in \mathbb{Z}_{+}^{n},
$$

stop with the optimal solution $\left(x^{*}, y^{*}\right)$.
(ii) Otherwise, find some valid inequalities $\left(\alpha^{\top} x+\beta^{\top} y \leq \gamma, \forall(x, y) \in \mathcal{X}\right)$ violated by (x^{*}, y^{*}) (cuts). Add these cuts to the
 problem and solve the LP again.

Cutting plane algorithm

(1) Solve the linear programming (LP) relaxation problem to obtain its solution $\left(x^{*}, y^{*}\right)$.
(2) (i) If $\left(x^{*}, y^{*}\right)$ satisfies the integer constraint

$$
x^{*} \in \mathbb{Z}_{+}^{n},
$$

stop with the optimal solution $\left(x^{*}, y^{*}\right)$.
(ii) Otherwise, find some valid inequalities $\left(\alpha^{\top} x+\beta^{\top} y \leq \gamma, \forall(x, y) \in \mathcal{X}\right)$ violated by (x^{*}, y^{*}) (cuts). Add these cuts to the problem and solve the LP again.

This talks: cuts (computation, separation).

Agenda

(1) Background on cuts
(2) Mixing cuts
(3) Sequentially lifted cuts

An illustrative example

- $y \geq 2 x_{1}, y \geq 3 x_{2}, y \geq 5 x_{3}, x_{1}, x_{2}, x_{3} \in\{0,1\}, y \in \mathbb{R}$.
- A stronger valid inequality: $y \geq 2 x_{1}+x_{2}$.
(1) $x_{2}=0$: implied by $y \geq 2 x_{1}$.
(2) $x_{2}=1$: implied by $y \geq 3 x_{2}=3$.
- A more stronger valid inequality: $y \geq 2 x_{1}+x_{2}+2 x_{3}$.
(1) $x_{3}=0$: implied by $y \geq 2 x_{1}+x_{2}$.
(2) $x_{3}=1$: implied by $y \geq 5 x_{3}=5$.

Mixing inequalities

- Mixing set: $\mathcal{X}=\left\{(x, y) \in\{0,1\}^{n} \times \mathbb{R}: y \geq a_{i} x_{i}, i \in[n]:=1, \ldots, n\right\}$.
- Mixing inequality [Atamtürk-Nemhauser-Savelsbergh, 2000], [Günlük-Pochet, 2001]

$$
\begin{equation*}
y \geq \sum_{\tau=1}^{s}\left(a_{i_{\tau}}-a_{i_{\tau-1}}\right) x_{i_{\tau}} \tag{1}
\end{equation*}
$$

where $\mathcal{S}:=\left\{i_{1}, \ldots, i_{s}\right\} \subseteq[n]$ such that $a_{i_{1}} \leq \cdots \leq a_{i_{s}}\left(a_{i_{0}}=0\right)$.

- \mathcal{S} grows exponentially with n but finding the most violated (1) (by $\left.\left(x^{*}, y^{*}\right)\right)$ can be done in $\mathcal{O}(n \log n)$.
- Reorder variables $x_{i}, i \in[n]$, such that $x_{1}^{*} \geq \cdots \geq x_{n}^{*}$ and set $\mathcal{S}:=\{1\}$.
- For each $i \in[n] \backslash\{1\}$, set $\mathcal{S}:=\mathcal{S} \cup\{i\}$ if $a_{i}>a_{k}$, where k is the last index added into \mathcal{S}.

Application

Chance-constrained program (CCP) with random RHS [Miller-Wagner, 1965]

$$
\begin{array}{cl}
\min & c^{\top} z \\
\text { s.t. } & \mathbb{P}\{T z \geq \xi\} \geq 1-\epsilon, \tag{CCP}\\
& z \in \mathcal{Z}
\end{array}
$$

- ξ is an m-dimensional nonnegative random vector with discrete distribution:

$$
\mathbb{P}\left\{\xi=\xi_{i}\right\}=p_{i}, i \in[n] .
$$

- $\mathcal{Z}=\left\{z \in \mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{q}: A z \leq b\right\}$.

An equivalent MIP formulation for CCP [Ruszczyńki, 2002]

We introduce $T z=v$ and for each i, a binary variable x_{i}, where $x_{i}=1$ guaranteeing $v \geq \xi_{i}$. Then the CCP can be equivalently formulated as:

$$
\begin{array}{cl}
\min & c^{\top} z \\
\text { s.t. } & \mathbb{P}\{T z \geq \xi\} \geq 1-\epsilon, \quad(\mathrm{CCP}) \tag{2}\\
& z \in \mathcal{Z}
\end{array}
$$

$$
\begin{array}{cl}
\min & c^{\top} z \\
\text { s.t. } & T z=v, z \in \mathcal{Z}, \\
& v \geq \xi_{i} x_{i}, \forall i \in[n], \\
& \sum_{i=1}^{n} p_{i} x_{i} \geq 1-\epsilon, \\
& v \in \mathbb{R}^{m}, x \in\{0,1\}^{n} .
\end{array}
$$

- Mixing sets: $\mathcal{X}(j)=\left\{\left(x, v_{j}\right) \in\{0,1\}^{n} \times \mathbb{R}: v_{j} \geq \xi_{i j} x_{i}, i \in[n]\right\}$.
- More investigations on mixing sets with constraint $\sum_{i=1}^{n} p_{i} x_{i} \geq 1-\epsilon$ [Luedtke-Ahmed-Nemhauser, 2010], [Küçükyavuz, 2012], [Abdi-Fukasawa, 2016], [Zhao-Huang-Zeng, 2017], [Kılıç-Karzan-Küçükyavuz-Lee, 2022].

A generic implementation

- Variable bounds relations:

$$
\begin{equation*}
y \star a x+b, \quad \star \in\{\geq, \leq\} . \tag{3}
\end{equation*}
$$

- During the presolve process, MIP solvers detect relations (3) from two-variable constraints or general constraints by probing [Savelsbergh, 1994].
- Had already be used to, e.g., tighten bounds of variables through (node) presolve, guide branching, and enhance cuts separation.
- The mixing cuts can be derived from variable bounds relations in which x is a binary variable and y is a non-binary variable.

$$
\mathcal{X}=\left\{(x, y) \in\{0,1\}^{n} \times \mathbb{R}: y \geq a_{i} x_{i}, i \in[n]:=1, \ldots, n\right\}
$$

\geq-mixing cuts

$$
\begin{equation*}
y \geq a_{i} x_{i}+b_{i}, x_{i} \in\{0,1\}, i \in \mathcal{N}, y \in[\ell, u] . \tag{4}
\end{equation*}
$$

Normalization: $0<a_{i} \leq u-\ell$ and $b_{i}=\ell$ for all $i \in[n]$.
(i) If $a_{i}<0$, variable x_{i} can be complemented by $1-x_{i}$. If $a_{i}=0, y \geq a_{i} x_{i}+b_{i}$ can be removed from (4) and $\ell^{\prime}:=\max \left\{\ell, b_{i}\right\}$ is the new lower bound for $y\left(a_{i}>0\right)$.
(ii) If $a_{i}+b_{i} \leq \ell$, by $a_{i}>0$ (from (i)), constraint $y \geq a_{i} x_{i}+b_{i}$ is implied by $y \geq \ell$ and hence can be removed from (4) $\left(a_{i}+b_{i}>\ell\right)$.
(iii) If $b_{i}>\ell$, by $a_{i}>0$ (from (i)), $\ell^{\prime}:=b_{i}$ is the new lower bound for y; if $b_{i}<\ell$, by $a_{i}+b_{i}>\ell$ (from (ii)), relation $y \geq a_{i} x_{i}+b_{i}$ can be changed into $y \geq\left(a_{i}+b_{i}-\ell\right) x_{i}+\ell\left(b_{i}=\ell\right)$.
(iv) If $a_{i}>u-\ell$, by $b_{i}=\ell$ (from (iii)), $x_{i}=0$ must hold and constraint $y \geq a_{i} x_{i}+\ell$ can be removed from (4) ($a_{i} \leq u-\ell$).
$\geq-$ mixing cut:

$$
y-\ell \geq \sum_{\tau=1}^{s}\left(a_{i_{\tau}}-a_{i_{\tau-1}}\right) x_{i_{\tau}}
$$

where $\mathcal{S}:=\left\{i_{1}, \ldots, i_{s}\right\} \subseteq \mathcal{N}$ such that $a_{i_{1}} \leq \cdots \leq a_{i_{s}}\left(a_{i_{0}}=0\right)$.

s-mixing cuts

$$
y \leq-a_{j} x_{j}+b_{j}, x_{j} \in\{0,1\}, j \in \mathcal{M}, y \in[\ell, u] .
$$

Normalization: $0<a_{j} \leq u-\ell$ and $b_{j}=u$ for all $j \in \mathcal{M}$.
s-mixing cut:

$$
u-y \geq \sum_{\tau=1}^{t}\left(a_{j_{\tau}}-a_{j_{\tau-1}}\right) x_{j_{\tau}}
$$

where $\mathcal{T}:=\left\{j_{1}, \ldots, j_{t}\right\} \subseteq \mathcal{M}$ such that $a_{j_{1}} \leq \cdots \leq a_{j_{t}}\left(a_{j_{0}}=0\right)$.

Conflict inequality

Observation: $y \geq 2 x_{1}, y \leq-5 x_{2}+6, x_{1}, x_{2} \in\{0,1\} \Rightarrow x_{1}+x_{2} \leq 1$.

$$
\begin{aligned}
& y \geq a_{i} x_{i}+\ell, x_{i} \in\{0,1\}, i \in \mathcal{N}, \\
& y \leq-a_{j} x_{j}+u, x_{j} \in\{0,1\}, j \in \mathcal{M}, y \in[\ell, u]
\end{aligned}
$$

Conflict inequality:

$$
x_{i^{\prime}}+x_{j^{\prime}} \leq 1,
$$

where $i^{\prime} \in \mathcal{N}$ and $j^{\prime} \in \mathcal{M}$ such that $a_{i^{\prime}}+a_{j^{\prime}}>u$.

CCPs instances

Transportation problem [Luedtke-Ahmed-Nemhauser, 2010]
$\min _{x \in \mathbb{R}_{+}^{n \times m}}\left\{\sum_{i \in[n]} \sum_{j \in[m]} c_{i j} x_{i j}: \sum_{j \in[m]} x_{i j} \leq M_{i}, i \in[n], \mathbb{P}\left\{\sum_{i \in[n]} x_{i j} \geq d_{j}, j \in[m]\right\} \geq 1-\epsilon\right\}$, 40 instances, https://jrluedtke.github.io.

Lot sizing problem [Zhao-Huang-Zeng, 2017]

$$
\begin{aligned}
& \min _{(x, w) \in \mathbb{R}_{+}^{T} \times\{0,1\}^{T}}\left\{\sum_{t \in[T]}\left(c_{t} x_{t}+f_{t} w_{t}+h_{t} \mathbb{E}\left(\left(\sum_{j \in[t]} x_{j}-\sum_{j \in[t]} d_{j}\right)^{+}\right)\right):\right. \\
&\left.x_{t} \leq M_{t} w_{t}, t \in[T], \mathbb{P}\left\{\sum_{j \in[t]} x_{j} \geq \sum_{j \in[t]} d_{j}, t \in[T]\right\} \geq 1-\epsilon\right\},
\end{aligned}
$$

90 instances, https://sites.pitt.edu/~bzeng.

Computational results: CCPs

- Hardware: a cluster of Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz computers.
- MIP solver: SCIP 8.0.0.
- Time limit: 7200 seconds.

Problems	DEFAULT			NO MIXING CUT		
	Solved	Time	Nodes	Solved	Time	Nodes
Transportation	32	290.8	66	9	3630.5	14245
Lot sizing	72	2003.4	103964	59	2790.2	161084

- The mixing cuts can effectively improve the performance of solving MIP formulations of CCPs.

Computational results: MIPLIB 2017 Benchmark

240 instances, https://miplib.zib.de/index.html.

Bracket	$\#$	DEFAULT				NO MIXING CUT			R_{T}
		Solved	Time	Nodes	Solved	Time	Nodes		
$[0,7200]$	123	122	220.5	3124	120	230.9	3476	1.05	1.11
$[10,7200]$	112	111	323.2	4104	109	340.6	4610	1.05	1.12
$[100,7200]$	79	78	817.6	12525	76	871.7	14205	1.07	1.13
$[1000,7200]$	40	39	2253.0	50486	37	2441.3	61301	1.08	1.21

- The mixing cuts hold potential for practically solving generic MIPs.
- Problem fhnw-binpack4-48 goes from $7200+$ seconds to 72.2 seconds.

Agenda

(1) Background on cuts

(2) Mixing cuts
(3) Sequentially lifted cuts

Integer knapsack cover relaxation

$$
\begin{array}{cl}
\min _{x, y} & c^{\top} x+g^{\top} y \\
\text { s.t. } & A x+B y \leq d \tag{5}\\
& (x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{m}
\end{array}
$$

Integer knapsack cover (row) relaxation:

$$
\mathcal{X}:=\left\{x \in \mathbb{Z}_{+}^{n}: a^{\top} x \geq b\right\}
$$

where $a^{\top} x \geq b$ is a row in (5) with $a_{i} \in \mathbb{Z}_{++}$and $b \in \mathbb{Z}_{++}$.
Applications: cutting stock problem, heterogeneous vehicle routing problem, mixed pallet design (MPD) problem.

Investigations on $\operatorname{conv}(\mathcal{X}):$ [Pochet-Wolsey, 1995], [Mazur, 1999], [Yaman, 2007].

An illustrative example

- $\mathcal{X}=\left\{x \in \mathbb{Z}_{+}^{2}: 6 x_{1}+13 x_{2} \geq 15\right\}$
- Fixing $x_{2}=0, \mathcal{X}$ reduces to $\mathcal{X}(\{1\}):=\left\{x_{1} \in \mathbb{Z}_{+}: 6 x_{1} \geq 15\right\}$.
- $x_{1} \geq 3$ is valid for $\mathcal{X}(\{1\})$ but invalid for \mathcal{X}.
- Solution: rotating.

An illustrative example

- $\mathcal{X}=\left\{x \in \mathbb{Z}_{+}^{2}: 6 x_{1}+13 x_{2} \geq 15\right\}$
- Fixing $x_{2}=0, \mathcal{X}$ reduces to $\mathcal{X}(\{1\}):=\left\{x_{1} \in \mathbb{Z}_{+}: 6 x_{1} \geq 15\right\}$.
- $x_{1} \geq 3$ is valid for $\mathcal{X}(\{1\})$ but invalid for \mathcal{X}.
- Solution: rotating.

An illustrative example

- $\mathcal{X}=\left\{x \in \mathbb{Z}_{+}^{2}: 6 x_{1}+13 x_{2} \geq 15\right\}$
- Fixing $x_{2}=0, \mathcal{X}$ reduces to $\mathcal{X}(\{1\}):=\left\{x_{1} \in \mathbb{Z}_{+}: 6 x_{1} \geq 15\right\}$.
- $x_{1} \geq 3$ is valid for $\mathcal{X}(\{1\})$ but invalid for \mathcal{X}.
- Solution: rotating.
- The other two are too weak or invalid.

An illustrative example cont.

- $\mathcal{X}=\left\{x \in \mathbb{Z}_{+}^{2}: 6 x_{1}+13 x_{2} \geq 15\right\}$.
$x_{1}+\alpha_{2} x_{2} \geq 3$ is a valid inequality for \mathcal{X} if and only if

$$
\alpha_{2} \geq \frac{3-x_{1}}{x_{2}}, \forall x \in \mathcal{X}, x_{2} \geq 1 .
$$

This is equivalent to

$$
\begin{aligned}
\alpha_{2} \geq z= & \max _{x \in \mathbb{Z}_{+}^{2}} \\
& \frac{3-x_{1}}{x_{2}} \\
\text { s.t. } & 6 x_{1}+13 x_{2} \geq 15 \\
& x_{2} \geq 1
\end{aligned}
$$

$\alpha_{2}=z=2 \Rightarrow \mathrm{~A}$ strong valid inequality $x_{1}+2 x_{2} \geq 3$.

Lifting

- $\mathcal{X}:=\left\{x \in \mathbb{Z}_{+}^{n}: a^{\top} x \geq b\right\}$.
- Fix $x_{i}=0$ for all $i \in[n] \backslash\{j\}$.
- Let $b=k a_{j}+r$ where $k, r \in \mathbb{Z}_{+}$and $1 \leq r \leq a_{j}$.
- $r x_{j} \geq r(k+1)$ is a valid inequality of $\mathcal{X}(\{j\}):=\left\{x_{j} \in \mathbb{Z}_{+}: a_{j} x_{j} \geq b\right\}$.
- $r x_{j}+\alpha_{\ell} x_{\ell} \geq r(k+1)$ is valid inequality for $\mathcal{X}(\{j, \ell\})$ if and only if

$$
\alpha_{\ell} \geq \frac{r(k+1)-r x_{j}}{x_{\ell}}, \forall x \in \mathcal{X}(\{j, \ell\}), x_{\ell} \geq 1
$$

Lifting cont.

- Equivalent to

$$
\begin{aligned}
\alpha_{\ell} \geq z_{\ell}=\max _{x \in \mathbb{Z}_{+}^{2}} & \frac{r(k+1)-r x_{j}}{x_{\ell}} \\
& \text { s.t. } \\
& a_{j} x_{j}+a_{\ell} x_{\ell} \geq b, \\
& x_{\ell} \geq 1 .
\end{aligned}
$$

- Setting $\alpha_{\ell}=z_{\ell}$, we obtain a valid inequality

$$
r x_{j}+\alpha_{\ell} x_{\ell} \geq r(k+1)
$$

for $\mathcal{X}(\{j, \ell\})$.

Lifting cont.

- Assume that

$$
r x_{j}+\sum_{i \in \mathcal{S}} \alpha_{i} x_{i} \geq r(k+1)
$$

is valid for $\mathcal{X}(\mathcal{S} \cup\{j\})$ where $\mathcal{S} \subseteq[n] \backslash\{j\}$.

- For $\ell \in[n] \backslash(\mathcal{S} \cup\{j\})$,

$$
r x_{j}+\alpha_{\ell} x_{\ell}+\sum_{i \in \mathcal{S}} \alpha_{i} x_{i} \geq r(k+1)
$$

is a valid inequality for $\mathcal{X}(\mathcal{S} \cup\{j, \ell\})$ if and only if

$$
\alpha_{\ell} \geq \frac{r(k+1)-r x_{j}-\sum_{i \in \mathcal{S}} \alpha_{i} x_{i}}{x_{\ell}}, \forall x \in \mathcal{X}(\mathcal{S} \cup\{j, \ell\}), x_{\ell} \geq 1 .
$$

Lifting cont.

- Equivalent to

$$
\begin{aligned}
\alpha_{\ell} \geq z_{\ell}=\max _{x \in \mathbb{Z}_{+}^{|\mathcal{S}|+2}} & \frac{r(k+1)-r x_{j}-\sum_{i \in \mathcal{S}} \alpha_{i} x_{i}}{x_{\ell}} \\
& \text { s.t. } \\
& a_{j} x_{j}+a_{\ell} x_{\ell}+\sum_{i \in \mathcal{S}} a_{i} x_{i} \geq b \\
& x_{\ell} \geq 1
\end{aligned}
$$

- Setting $\alpha_{\ell}=z_{\ell}$, we obtain a valid inequality

$$
r x_{j}+\alpha_{\ell} x_{\ell}+\sum_{i \in \mathcal{S}} \alpha_{i} x_{i} \geq r(k+1)
$$

for $\mathcal{X}(\mathcal{S} \cup\{j, \ell\})$.

Sequentially lifted (SL) inequality and its strength

$$
\begin{equation*}
r x_{j}+\sum_{i \in[n] \backslash\{j\}} \alpha_{i} x_{i} \geq r(k+1) \tag{6}
\end{equation*}
$$

Theorem (Wolsey, 1976)
The SL inequality (6) defines a facet of $\operatorname{conv}(\mathcal{X})$.

Complexity of computing the SL inequality

$$
\begin{array}{cl}
z_{\ell}=\max _{x \in \mathbb{Z}_{+}^{|\mathcal{S}|+2}} & \frac{r(k+1)-r x_{j}-\sum_{i \in \mathcal{S}} \alpha_{i} x_{i}}{x_{\ell}} \\
\text { s.t. } & a_{j} x_{j}+a_{\ell} x_{\ell}+\sum_{i \in \mathcal{S}} a_{i} x_{i} \geq b \\
& x_{\ell} \geq 1
\end{array}
$$

Theorem

The lifting problem (7) is NP-hard.
Solved by dynamic programming in $\mathcal{O}(n b)$.

- Fix $x_{\ell} \Rightarrow$ integer knapsack problem.
- Collect all the information calculated in the previous steps.

Bounds on the lifting coefficients

Theorem

Let $a_{i}=k_{i} a_{j}+r_{i}$ for $i \in[n] \backslash\{j\}$ where $k_{i}, r_{i} \in \mathbb{Z}_{+}$and $1 \leq r_{i} \leq a_{j}$,

$$
\begin{equation*}
r x_{j}+\sum_{i \in[n] \backslash\{j\}} \alpha_{i} x_{i} \geq r(k+1) \tag{8}
\end{equation*}
$$

be the $S L$ inequality, and $\mathcal{T}=\left\{i \in[n]: r_{i}<r\right\}$. Then
(i) if $i \in \mathcal{T}, r k_{i} \leq \alpha_{i} \leq r\left(k_{i}+1\right)$; and
(ii) if $i \in[n] \backslash(\mathcal{T} \cup\{j\}), \alpha_{i}=r\left(k_{i}+1\right)$.

- Dimension reduction of the lifting problem.

$$
r x_{j}+\sum_{i \in \mathcal{T}} \alpha_{i} x_{i}+\sum_{i \in[n] \backslash(\mathcal{T} \cup\{j\})} r\left(k_{i}+1\right) x_{i} \geq r(k+1)
$$

- For an LP relaxation solution x^{*}, no violated SL inequality (9) exists if

$$
r x_{j}^{*}+\sum_{i \in \mathcal{T}} r k_{i} x_{i}^{*}+\sum_{i \in[n] \backslash(\mathcal{T} \cup\{j\})} r\left(k_{i}+1\right) x_{i}^{*} \geq r(k+1) .
$$

Comparison with the mixed integer rounding (MIR) inequality

- SL inequality

$$
\begin{equation*}
r x_{j}+\sum_{i \in \mathcal{T}} \alpha_{i} x_{i}+\sum_{i \in[n] \backslash(\mathcal{T} \cup\{j\})} r\left(k_{i}+1\right) x_{i} \geq r(k+1) \tag{9}
\end{equation*}
$$

- If $i \in[n] \backslash(\mathcal{T} \cup\{j\}), \alpha_{i}=r\left(k_{i}+1\right)$ where $\mathcal{T}=\left\{i \in[n]: r_{i}<r\right\}$.
- MIR inequality [Nemhauser-Wolsey, 1990], [Yaman, 2007]

$$
\begin{equation*}
r x_{j}+\sum_{i \in[n] \backslash\{j\}}\left(r k_{i}+\min \left\{r_{i}, r\right\}\right) x_{i} \geq r(k+1) \tag{10}
\end{equation*}
$$

- Recognized as the most effective cuts.
- If $|\mathcal{T}|=0$, the SL inequality is the same as the MIR inequality.

$\mathcal{T}=\{s\}$ is a singleton

(i) If $r=a_{j}$, then $\ell_{s} a_{s} \leq b r_{s}$ where ℓ_{s} denotes the least common multiple of a_{j} and r_{s}.
(ii) If $r<a_{j}$, then $\frac{r}{r_{s}} \in \mathbb{Z}$ and $r a_{s} \leq b r_{s}$.

Theorem

For $\mathcal{T}=\{s\}$, if conditions (i) and (ii) hold, the $S L$ inequality is the same as the MIR inequality; otherwise, the SL inequality strictly dominates the MIR inequality.

Computational results: random instances

$$
\min _{x \in \mathbb{Z}_{+}^{n}}\left\{c^{\top} x: A x \geq b\right\} .
$$

- Sparsity of a constraint: [0.05n, 0.15n]
- $b=\left\lceil\frac{1}{2} A \boldsymbol{e}\right\rceil$
- $a_{i j} \in\{100,101, \ldots, 1000\}$
- $c=\boldsymbol{e}$

$n-m$	MIR				SL				MIR+SL			
	Gap Solved	Time	Nodes	Gap	Solved	Time	Nodes	Gap	Solved	Time	Nodes	
$60-60$	46.0	100	34.0	72874	49.9	100	16.2	37157	50.7	100	17.0	37624
$70-70$	33.5	75	1441.0	2569344	38.0	91	699.1	1590467	38.1	90	686.9	1551934

Gap $=100 \cdot\left(z_{\mathrm{ROOT}}-z_{\mathrm{LP}}\right) /\left(z_{\mathrm{MIP}}-z_{\mathrm{LP}}\right)$, where

- z_{LP} is the objective value of the initial LP relaxation,
- $z_{\text {ROOT }}$ is the objective value of the LP relaxation after adding cuts,
- $z_{\text {MIP }}$ is the objective value of the optimal solution.

Computational results: real-world instances

- Staircase capacitated covering (SCC) problem, 20×10 instances, http://or.dei.unibo.it/library.
- Mixed pallet design (MPD) problem, 14×10 instances, http://www.bilkent.edu.tr/~alpersen/Mixed_Pallet.

Problems	DEFAULT			DEFAULT+SL		
	Solved	Time	Nodes	Solved	Time	Nodes
SCC	98	36.3	2128	100	28.3	1545
MPD	116	82.9	103751	126	30.3	30496

Extensions

- For 1065 instances in MIPLIB 2017, the SL cuts can be constructed for only 147 instances.
- The performance is neutral.
- More investigations on $\operatorname{conv}\left(\left\{x \in \mathbb{Z}: a^{\top} x \geq b, 0 \leq x \leq u\right\}\right)$ and efficient aggregation procedures are needed.

References

- K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen, C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S.J. Maher, F. Matter, E. Mühmer, B. Müller, M.E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske. F. Wegscheider, P. Wellner, D. Weninger, J. Witzig. The SCIP Optimization Suite 8.0, 2021, http://www.optimization-online.org/DB_HTML/2021/12/8728.html.
- W.-K. Chen, L. Chen, and Y.-H. Dai, Lifting for the Integer Knapsack Cover Polyhedron, Journal of Global Optimization, 2022, https://doi.org/10.1007/s10898-022-01252-x.

Thank you for your attention!

