
This article was downloaded by: [58.250.174.73] On: 04 March 2021, At: 01:10
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Manufacturing & Service Operations Management

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Inpatient Overflow: An Approximate Dynamic
Programming Approach
J. G. Dai, Pengyi Shi

To cite this article:
J. G. Dai, Pengyi Shi (2019) Inpatient Overflow: An Approximate Dynamic Programming Approach. Manufacturing & Service
Operations Management 21(4):894-911. https://doi.org/10.1287/msom.2018.0730

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/msom.2018.0730
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT
Vol. 21, No. 4, Fall 2019, pp. 894–911

http://pubsonline.informs.org/journal/msom ISSN 1523-4614 (print), ISSN 1526-5498 (online)

Inpatient Overflow: An Approximate Dynamic
Programming Approach
J. G. Dai,a,b Pengyi Shic

a School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853; b Institute for Data and Decision
Analytics, The Chinese University of Hong Kong, Shenzhen 518172, China; cKrannert School of Management, Purdue University,
West Lafayette, Indiana 47907
Contact: jd694@cornell.edu, http://orcid.org/0000-0002-5223-0129 (JGD); shi178@purdue.edu, http://orcid.org/0000-0003-0905-7858 (PS)

Received: February 23, 2017
Revised: September 22, 2017; December 28,
2017
Accepted: January 21, 2018
Published Online in Articles in Advance:
May 16, 2019

https://doi.org/10.1287/msom.2018.0730

Copyright: © 2019 INFORMS

Abstract. Problem definition: Inpatient beds are usually grouped into several wards, and
each ward is assigned to serve patients from certain “primary” specialties. However, when
a patient waits excessively long before a primary bed becomes available, hospital managers
have the option to assign her to a nonprimary bed. although it is undesirable. Decidingwhen
to use such “overflow” is difficult in real time and under uncertainty. Relevance: To aid the
decision making, we model hospital inpatient flow as a multiclass, multipool parallel-server
queueing system and formulate the overflow decision problem as a discrete-time, infinite-
horizon average cost Markov decision process (MDP). The MDP incorporates many realistic
and important features such as patient arrival and discharge patterns depending on time of
day. Methodology: To overcome the curse-of-dimensionality of this formulated MDP, we
resort to approximate dynamic programming (ADP). A critical part in designing an ADP
algorithm is to choose appropriate basis functions to approximate the relative value function.
Using a novel combination of fluid control and single-pool approximation, we develop
analytical forms to approximate the relative value functions at midnight, which then guides
the choice of the basis functions for all other times of day. Results: We demonstrate, via
numerical experiments in realistic hospital settings, that our proposed ADP algorithm is
remarkably effective in finding good overflow policies. These ADP policies can significantly
improve system performance over some commonly used overflow strategies—for example,
in a baseline scenario, the ADP policy achieves a congestion level similar to that achieved by
a complete bed sharing policy, while reduces the overflow proportion by 20%. Managerial
implications: We quantify the trade-off between the overflow proportion and congestion
from implementing ADP policies under a variety of system conditions and generate useful
insights. The plotted efficient frontiers allow managers to observe various performance
measures in different parameter regimes, and the ADP policies provide managers with
operational strategies to achieve the desired performance.

Funding: This research is supported in part by the National Science Foundation, Division of Civil,
Mechanical and Manufacturing Innovation [Grants 1335724 and 1537795].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2018.0730.

Keywords: multiclass multipool queueing system • inpatient flow management • approximate dynamic programming

1. Introduction
Inpatient bed management is crucial for hospital oper-
ations, particularly for upstream emergency department
(ED) management. It is well known that a key con-
tributor for ED overcrowding is ED boarding—holding
admitted patients in the ED until downstream inpa-
tient beds become available (Hoot and Aronsky 2008).
Prolonged boarding time negatively affects patient
outcomes (Singer et al. 2011) and increases hospital
operational costs (Huang et al. 2010, Pines et al. 2011).
Because of budgetary constraints, adding inpatient ca-
pacity such as increasing the number of inpatient beds or
nurses is not always possible. Various strategies have
been proposed with the aim of utilizing the existing

capacity more efficiently—for example, smoothing elec-
tive surgical schedule or expediting inpatient discharges;
see the summary and references in Rabin et al. (2012). This
paper focuses on the overflow strategy.

1.1. Bed Pooling and Overflow
Hospitals usually partition their general inpatient beds
(“floor beds”) into different wards according to medical
specialties, such as surgical wards and cardiology
wards. Ideally, a patient should be admitted to a primary
ward that matches her medical needs. However, be-
cause of the inherent variations in patient arrivals and
discharges, sometimes the primary ward can be full
while other nonprimary wards still have available

894

http://pubsonline.informs.org/journal/msom
mailto:jd694@cornell.edu
http://orcid.org/0000-0002-5223-0129
http://orcid.org/0000-0002-5223-0129
mailto:shi178@purdue.edu
http://orcid.org/0000-0003-0905-7858
http://orcid.org/0000-0003-0905-7858
https://doi.org/10.1287/msom.2018.0730
https://doi.org/10.1287/msom.2018.0730

beds. In this situation, hospital managers may choose to
assign this patient to a nonprimary ward, especially
when the patient has boarded in the ED for several hours.
We call this practice overflow and the patient an overflow
patient. An empirical study at a partner hospital in Sin-
gapore, which motivated this paper, shows that more
than 20% inpatient admissions from ED were over-
flow patients between 2008 and 2010 (Shi et al. 2014).

On the one hand, overflow helps shorten the boarding
time because resource pooling has the benefits of re-
ducing waiting time. On the other hand, excessive
overflow is not desirable for a number of reasons:
A mixed patient population in the ward may require
more coordination from the medical teams (Rabin et al.
2012); the quality of patient care could be compromised
(Song et al. 2018); and physicians waste more time to
travel among wards to do rounding (Gesenway 2010).
Thus, hospital managers always need to balance the
key tradeoff between excessive waiting and undesirable
overflow. This is not an easy task. As pointed out by a
group of practitioners (Teow et al. 2011), when deciding
whether to assign a patient to a nonprimaryward or not,
one needs to consider many factors, such as the current
crowdedness in the ED, the projected bed requests and
discharges (which are usually time-varying), and the
medical similarities between the patients and wards. In
addition, as we will further discuss in Section 2, over-
flow patients consume system capacity; they may block
new patients from being admitted, causing even more
congestion.

In this paper, we develop a decision support tool to
help hospital managers tackle this difficult overflow
decision problem. Themodel and algorithmwe develop
are for general multipool parallel-server queueing sys-
tems; below, we use an example of a five-pool system to
demonstrate that our developed algorithm can signifi-
cantly improve various system performance over some
commonly used overflow strategies.

1.2. A Five-Pool System Example
Consider a five-class, five-pool parallel-server queue-
ing system that is motivated from the aforementioned
Singaporean hospital. The customers model patients
who require inpatient service, such as patients who
need to be transferred from ED or intensive care units
(ICUs) to the general inpatient wards, or patients ad-
mitted for elective surgeries. Their bed-requests cor-
respond to the arrivals in this system. The five customer
classes model five medical specialties: General Medi-
cine (GeMed), Surgery (Surg), Orthopedic (Ortho),
Cardiology (Card), and Other Medicine (OtMed). Each
of the five server pools models one inpatient ward
(sometimes a group of similar wards) that is allocated
to the corresponding specialty. Within each pool, there
are multiple servers corresponding to the beds in the
ward(s). In this paper, we use patient and customer,

bed and server, server pool and ward, bed-request and
arrival, and discharge and departure, interchangeably.
Based on the hospital’s internal bed assignment

guideline (National University Hospital 2011), we as-
sume that each specialty has one dedicated ward as its
primary ward, and its patients can be routed to three
nonprimary wards: one “preferred” overflow ward
(i.e., beds in this ward are preferred for overflow use)
and two secondary overflow wards. Figure 1 shows
a schematic representation of the patient-bed config-
uration, with the solid arrows indicating the primary
patient-bed assignment, and the thick and thin dashed
arrows indicating the preferred and secondary over-
flow assignments, respectively.
We assume that patient arrivals from each speciality

follow a periodic, time-nonhomogeneous Poisson pro-
cess. Each patient, upon admission to a bed, spends
a random amount of service time before being discharged
from the hospital. This service time consists of (1)
a random number of days spent, referred as the length-
of-stay (LOS), and (2) some (random) extra hours spent
on the day of discharge. The former captures the time for
a patient to recover and is driven by her underlying
medical conditions; the latter captures the extra delay
presented during the discharge process and is usually
caused by medical staff schedule such as physician’s
rounding time. We specify the details of this two-time-
scale service time in Section 3.1. Note that the descrip-
tions here are for the basic queueing model to develop
our decision framework and algorithm. In the numerical
study reported at the end of this section and in Section 7,
we go beyond this basic model and test our developed
algorithm in a more realistic simulation model popu-
lated from hospital data—for example, using separate,
non-Poisson arrival processes for elective and ICU-
transfer patients. We leave the details of the extended
simulation model to Section 7.1.

Overflow Decisions. The decision maker (e.g., the bed
management unit in a hospital) observes the system

Figure 1. (Color online) Illustration of the Five-Class, Five-
Pool System

Notes. Pools 1–5 are the primary server pools for General Medicine,
Surgery, Orthopedic, Cardiology, and Other Medicine, respectively.
Solid lines represent the primary bed assignment, thick dashed lines
represent the preferred overflow assignment, and thin dashed lines
represent the secondary overflow assignment.

Dai and Shi: Inpatient Overflow ADP
Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS 895

state at certain fixed time epochs every day and de-
cides on (1) whether to assign a waiting patient to
a nonprimary ward, and (2) which ward to use if
multiple nonprimary wards have available beds. A pri-
mary bed assignment, if possible, is made immediately
upon a patient arrival or bed release because this is the
most ideal situation, and, thus, it is excluded from the
decisions at each epoch. We model the overflow deci-
sions as a Markov decision process (MDP), where the
decision maker aims to minimize the long-run average
cost over (infinitely) many epochs. The total cost in each
epoch includes:

• The holding cost associated with the number of
waiting patients, which captures the system conges-
tion; and

• The overflow cost associated with each overflow
patient, which captures the nondesirableness of placing
a patient in a nonprimary ward.

These two costs represent the key tradeoff in the
overflow decision and provide us a “tuning knob” to
achieve target system performance, as we will further
discuss below. We assume that both costs are class-
dependent, where for each patient class: (1) the over-
flow cost of assigning a patient to a preferred overflow
ward is cheaper than that to a secondary overflow
ward; and (2) the holding cost is linear in the number of
waiting patients. Also see section B.4 in the online
appendix for a setting in which patients who wait
longer incur a more expensive holding cost.

Current Practice. From our discussions with staff
members at the partner hospital in Singapore, we

understand that for decision (a)—“whether to”—the
internal guideline suggests performing more aggres-
sive overflow during the night and early morning,
because a primary bed, if not available upon a patient
arrival, is unlikely to become available in the next
few hours, because few discharges occur in this period.
For decision (b)—“which ward”—a commonly used
practice is the priority strategy—that is, use beds in the
preferred overflow wards first and then use beds in
the secondary overflowwards. Accordingly, we choose
the following three naive policies as the benchmark for
policy comparison: (1) full-sharing policy: allow over-
flow at each decision epoch; (2) midnight policy: allow
overflow only at the midnight epoch every day; and
(3) empirical policy: allow overflow only between 7 p.m.
and 7 a.m. the next day. All three policies use the
priority strategy and admit as many patients as pos-
sible at each epoch allowing overflow. We call the last
policy the empirical policy, because it mimics the
hospital’s current practice and can produce a set of
performance curves that are close to the empirical ones;
see model validation in section B.2 in the online
appendix.

Policy Comparison. We propose an approximate dy-
namic programming (ADP) algorithm to solve the
MDP and compare the corresponding ADP policy with
the three naive policies. Under a “baseline scenario” to
be specified in Section 7, Figure 2, (a) and (b), plots the
hourly queue length (average number of patients
boarding in the ED) and the four-hour service level
(fraction of patients waitingmore than four hours in the

Figure 2. (Color online) Hourly Average Queue Length and Fraction of Patients Waiting at Least Four Hours (Four-Hour
Service Level) Estimated from Simulating Different Overflow Policies in the Baseline Five-Pool Model

Note. The half-width of the 95% confidence interval is 0.001–0.005 for the queue length across all tested policies and is 0.01%–0.15% for the
four-hour service level.

Dai and Shi: Inpatient Overflow ADP
896 Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS

ED prior to ward admission), respectively, for each
policy. See section B.2 of the online appendix for the
motivation of choosing this specific service level and
section 6.4 of the online supplement in Dai and Shi
(2018) for plots on other service levels. Figure 3
shows the average overflow proportions (on the verti-
cal axis) from the ADP policy and naive policies. We
observe that the ADP policy approximately achieves the
hourly queue length and four-hour service level under
the full-sharing policy, which is the least congested
scenario any policy can ever achieve. Meanwhile, com-
paring to the 15.5% overflow proportion under the
full-sharing policy, the ADP policy reduces the over-
flow proportion to 12.5%, a 20% reduction. For a hos-
pital with a daily throughput of 100 patients and an
average LOS of 5 days, this reduction translates to
100(0.155 − 0.125) ∗ 5 ≈ 15 fewer patients in a nonpri-
mary ward every day by Little’s Law. In addition, the
ADP policy reduces the long-run average cost by more
than 17% compared with the naive policies.

The ADP policy shown in Figure 2 is from one set of
parameters of the unit holding cost and overflow cost.
In practice, estimating these cost parameters can be
difficult, if not impossible. In this paper, we mainly use
these cost parameters as a “tuning knob” to affect both
aggregate and class-level performance. For example,
Figure 3 plots the overflow proportion against the peak
queue length and four-hour service level from a series
of ADP policies, where we keep the unit holding cost
the same as in the baseline scenario, but incremen-
tally change the overflow costs. Such “efficient fron-
tier” plots allow managers to directly observe various
performance measures under different cost parameters
and identify the operating regime according to their
desired performance. More importantly, the ADP
policies provide managers with operational strategies
to achieve the desired performance.

1.3. Contributions
This paper makes three major contributions to the
literature.
First, we formulate the overflow decision problem as

a discrete-time, infinite-horizon average cost MDP
within a multiclass, multipool queueing network set-
ting. This MDP incorporates many realistic features of
hospital inpatient operations. In particular, by explic-
itly modeling the time-varying arrival and discharge
patterns, the decision makers not only need to account
for the randomness in arrivals and departures on the
daily scale, but also have to cope with the randomness
on the hourly scale. The latter indeed is a major chal-
lenge for hospital managers, because every hour of
waitingmatters in ED, and they have to decidewhether
to assign a waiting patient to a nonprimary bed without
knowing for sure when a primary bed will become
available in the next few hours.
Second, the formulatedMDP has a high-dimensional

state space, which renders traditional approaches, such
as policy iteration, computationally infeasible, even
with a small number of pools. Instead, we resort to the
ADP approach with feature-based value function ap-
proximation. A critical part in designing the ADP al-
gorithm is to choose appropriate basis functions. We
start by studying a special midnight MDP and develop
a novel combination of a fluid control model and an
integrated single-pool model to approximate its rela-
tive value functions. The analytical form of this ap-
proximation motivates our choice of the basis functions
for the midnight epoch. Then, we derive the basis
functions for other times of day and develop explicit
forms to evaluate the cost-to-go function efficiently,
further contributing to the overall effectiveness of our
ADP algorithm.
Third, we demonstrate, via extensive numerical ex-

periments, that our ADP algorithm is effective in finding

Figure 3. (Color online) Overflow Proportion Against Peak Queue Length or Four-Hour Service Level

Notes. In each plot, the two red dots correspond to performance from the full-sharing and empirical policies. The solid curves correspond to
performance from a series of ADP policies with the overflow cost pair—costs to a preferred and a secondary overflow ward—changing
from (5, 10) to (615, 620); the latter number in the pair is shown following B. The dots correspond to performance from the baseline ADP
policy with the overflow cost pair (30, 35). The midnight policy is not included here due to its poor performance under the baseline
“nonbalanced” bed allocation; see plots under a more balanced bed allocation in section 6.5 of the online supplement.

Dai and Shi: Inpatient Overflow ADP
Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS 897

good overflow policies in a variety of settings. In a two-
pool system where the “exact analysis” is feasible, we
show that the algorithm achieves near-optimal perfor-
mance (see Section 6.4). We further implement the ADP
algorithm in amore realistic, five-pool simulationmodel
populated with hospital data, where we remove re-
strictive model assumptions made for developing the
analytical framework. The ADP algorithm is still able to
find good overflowpolicies that improve various system
performance over the benchmark policies, as already
mentioned in this introduction; also see Section 7. We
perform various sensitivity analyses and generate useful
insights into the benefits of the ADP policies under
different system conditions. In addition, we show in
Section 5 that the complexity of the ADP algorithm is in
the order of J2, where J is the number of server pools.
Thus, the algorithm is scalable and can be applied to
other large systems beyond the five-pool system tested in
this paper.

1.4. Outline
The remainder of this paper is organized as follows. In
Section 2, we review relevant literature. In Section 3, we
describe the queueing system to model inpatient flow
and the long-run average cost MDP to model the
overflow decision problem. In Section 4, we derive
a time-decomposed Poisson equation for the long-run
average cost MDP with periodic arrivals and depar-
tures. In Section 5, we describe the general framework
of the ADP algorithm. In Section 6, we study a special
midnight MDP and propose the choice of the basis
functions for the midnight epoch, which then motives
the basis choice for other epochs. In Section 7, we test
the ADP algorithm in the five-pool simulation model.
Finally, we conclude this paper in Section 8.

2. Literature Review
We review three streams of literature that are related to
our work.

2.1. Hospital Inpatient Operations and
Bed Assignment

Inpatient flow management is an important area for
hospital operations (see Armony et al. 2015 for a
detailed empirical study and references). Among
this stream of literature, the most relevant work is
Thompson et al. (2009). They model the inpatient bed
assignment problem as a discrete-timeMDP that shares
several similar features with ourMDP, but the objective
is to maximize the total reward (“revenue”) brought by
patients admitted over a finite horizon. Under this
objective, the optimal policy may tend to admit more
high-revenue patients, but keep low-revenue patients
waiting longer. Our aim is to reduce waiting time
across all types of patients. Moreover, the algorithm
developed in Thompson et al. (2009) assumes a zero

terminal cost and uses a two-period total cost to ap-
proximate the value function, which is likely to perform
suboptimally in our long-run average cost setting. The
independent, contemporary work by Kilinc et al. (2016)
studies a similar overflow problem, with the key
tradeoff also being ED congestion versus the non-
desirableness of overflow. They use a continuous-time
MDP model and do not incorporate the time-varying
discharge pattern. We believe that explicitly modeling
the discharge pattern is important in inpatient opera-
tions; see Chan et al. (2017), Dai and Shi (2017), and
Dong and Perry (2017) for relevant discussions. In
addition, Kilinc et al. (2016) derive structural proper-
ties and develop heuristics in a two-pool setting,
whereas our focus is to develop efficient algorithms
for the multipool setting of realistic hospital sizes.
Mandelbaum et al. (2012) study bed assignment to
balance idleness and workload among wards, where
each ward can take any incoming patient (i.e., no
concept of overflow). Best et al. (2015) study bed al-
location from a more strategic level—that is, deciding
the number of “wings” and the number of beds allo-
cated to each wing; overflow between wings is not
allowed.

2.2. Routing and Scheduling in Queueing Network
Huang et al. (2015) develop an asymptotically optimal
policy for a multiclass queueing network modeling
patient flow through physicianswithin the ED. He et al.
(2019) develop a data-driven robust framework to
study a similar ED scheduling problem. Their frame-
work utilizes the P-model to maximize the fraction of
patients whose total time in the ED is within some
mandatory targets. Later, Han et al. (2016) adapt the
P-model to the inpatient bed assignment problem and
provide a myopic heuristic to optimize the x-hour
service level. Besides healthcare applications, there are
many works using multipool parallel-server models to
study routing policies in call centers; see, for example,
Armony and Ward (2010), Dai and Tezcan (2008),
Gurvich andWhitt (2009a, b, 2010), Stolyar and Tezcan
(2010, 2011), and Tezcan and Dai (2010). A major
difference between this line of works and our paper is
the cost structure. In addition to the waiting cost that is
accumulated continuously in all these models, our
model has a one-time overflow cost per overflow pa-
tient. This overflow cost is different from the one-time
abandonment or rejection cost in call-center models.
Abandoned or rejected customers in call-center models
do not consume any system capacity. However, an
overflow patient in our model does occupy a bed.
A new patient, who arrives after the overflow patient
and could have taken this occupied bed as a primary bed,
might need to wait and even be assigned to a nonprimary
bed later. Because of this overflow cost,wefind that a good
bed assignment policy may not be nonidling—sometimes

Dai and Shi: Inpatient Overflow ADP
898 Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS

it is beneficial to hold a patient in the buffer even
a nonprimaryward has an available bed. This finding is
consistent with the hospital’s current practice as dis-
cussed in Section 1.2 and with the empirical evidence
(Teow et al. 2011); also see similar findings in Kilinc
et al. (2016) and Baron et al. (2017) for strategic idling in
open-shop scheduling. In contrast, call-center papers
usually assume a nonidling policy. Perry and Whitt
(2009, 2011a, b) study the so-called X-model, where
the servers from one pool are only allowed to help the
other pool during a demand surge period, not the
normal random fluctuations in our setting. Pang and
Yao (2013) study a multipool system that allows cus-
tomers to switch buffers, which is uncommon for
boarding patients.

2.3. ADP and Its Applications in Healthcare and
Queueing Network Control

ADP is a powerful technique for tackling high-
dimensional MDP problems; see Bertsekas (2012)
and Powell (2011) and their references. Our pro-
posed ADP algorithm falls into the category of feature-
based value function approximation, where the value
function is approximated by a linear combination of
basis functions (“features”). This type of methods re-
quires (1) finding good basis functions and (2) tuning
the associated coefficients. There are a number methods
to address (2). In this paper, we use the temporal-
difference learning method (Sutton 1988); other
methods include Q-learning (Watkins and Dayan 1992)
and linear programming approach (ALP) (de Farias
and Roy 2003, Adelman and Mersereau 2008). How-
ever, there is no standard recipe for (1). Choosing good
basis functions generally requires substantial knowl-
edge of the specific problem structure and needs one to
“combine and customize ingredients from the litera-
ture to generate an effective algorithm” as pointed by
Moallemi et al. (2008). One of the main contributions of
our paper is to design good basis functions in the
setting of hospital inpatient bed assignment. The two
most relevant papers are Moallemi et al. (2008) and
Veatch (2005), both of which use fluid models to guide
the choice of basis functions in the setting of queueing
network control. We use a novel combination of a fluid
model and an integrated single-pool model to design
basis functions, which has several advantages over the
pure fluid basis functions; see more discussion in
Section 6.3. Moreover, we take the time-varying nature
into consideration when developing basis functions,
whereas Moallemi et al. (2008) and Veatch (2005) focus
on time-stationary settings. Examples of successful
applications of ADP in healthcare and service opera-
tions include appointment scheduling (Feldman et al.
2014), patient admission control (Samiedaluie et al.
2017), ambulance redeployment (Maxwell et al. 2010,

2013), HIV treatment (Khademi et al. 2015), and call
center management (Koole and Pot 2005, Roubos and
Bhulai 2010).

3. Model Description
In Section 3.1, we introduce a multiclass, multipool
parallel-server queueing system that models patient
flows to inpatient wards. This queueing system in-
corporates time-varying arrivals and a two-time-scale
service time feature. In Section 3.2, we specify the MDP
framework based on this queueing system. We make
several stylized assumptions for the purpose of de-
veloping the MDP framework. Later, in Section 7, we
relax these restrictive assumptions in an extended
simulation model, for example, further differentiat-
ing whether patients are admitted from ED or non-ED
sources within a specialty (class); using nongeometric,
empirical LOS distributions that depend on specialties
and admission sources. We demonstrate that our ADP
algorithm still produces good overflow policies in the
more realistic, extended simulation model.

3.1. Multiclass, Multipool Queueing System for
Inpatient Flows

The queueing system has J classes of patients and
J parallel servers pools, with each pool dedicated to
serve one primary patient class. For simplicity, we
assume that pool j serves class j—that is, pool j is the
primary pool for class j patients, j∈ {1, 2, . . . , J}. Each
server pool j has Nj identical servers. We use N �∑J

j�1Nj to denote the total number of servers in the system.
Upon a class j customer (patient) arrival, if the pri-

mary pool has an idle server, the customer is admitted
into service immediately; we call this admission
a primary assignment. Otherwise, the customer waits in
buffer j of infinite size. Depending on the overflow
decisions, to be specified in Section 3.2, the customer
may wait until a primary bed becomes available or,
before that, be admitted to a nondedicated pool at
a decision epoch; we call the latter admission an
overflow assignment. Upon a customer departure from
pool j, the just-freed server admits a customer from
buffer j following a first-come, first-served rule if the
buffer is not empty. If buffer j is empty, the server
becomes idle until a primary customer arrives, or be-
fore that, admits an overflow customer at a decision
epoch depending on the overflow decisions. Figure 1
illustrates a five-pool example with J � 5.

Time-VaryingArrivals. Each of the J classes of customers
arrive to the system following a time-nonhomogeneous
Poisson process, where the associated arrival rate func-
tion λj(t) is periodic with a period T—that is,

λj(s) � λj(s + T) for s≥ 0, j � 1, 2, . . . , J. (1)

Dai and Shi: Inpatient Overflow ADP
Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS 899

For the ease of exposition, we use day as the time unit
and assume that T � 1 and set

Λj �
∫ T

0
λj(s)ds,

to be the daily arrival rate for class j customers.
Figure 4(a), which illustrates the empirical hourly ar-
rival distribution observed at our partner hospital,
clearly shows a time-varying pattern.

Two-Time-Scale Service Time. Upon being admitted
into service, a customer occupies the server for a random
amount of time until departing from the system. We
assume that the service time of a customer takes the
following two-time-scale form:

service time � LOS + hdis − hadm, (2)

where LOS denotes the number of midnights a cus-
tomer spends in the system, and hadm and hdis de-
note the time-of-day for the customer’s admission and
discharge time. Shi et al. (2016) show that this two-
time-scale service time is a critical feature to capture
inpatient flow dynamics, because LOS is mainly
driven by the patient’s underlying disease, whereas
the discharge time hdis is often the results of staff
scheduling such as the physician’s rounding time.
We further assume that (1) the distributions of LOS
and hdis are pool-dependent; (2) the LOS distribu-
tion associated with pool j follows a geometric dis-
tribution with mean 1/µj; (3) the distribution of hdis
associated with pool j follows a general random

distribution characterized by the cumulative distri-
bution function

Hj(t) � P(hdis ≤ t),
and is independent of the LOS distribution. Figure 4(b)
shows two sets of empirical discharge distributions of
hdis, using 2010 data from the partner hospital.
The random LOS and hdis create uncertainties in both

the daily and hourly time scales: (1) the number of pa-
tients to be discharged each day is uncertain, and (2) the
number of discharges in each hour is uncertain, even
when (1) is known. The first uncertainty is captured
through the distribution of LOS, while the second
uncertainty is captured through the discharge distri-
bution Hj(·). The admission time hadm is internally
determined by the system dynamics, and, thus, the
conventional independent and identically distributed
assumption no longer holds for the service time.

3.2. Overflow Decisions and MDP Formulation
We formulate the overflow decision problem as an
infinite-horizon, discrete-time average-cost MDP. The
decision maker observes the system state S(·) at pre-
determined decision epochs t0, t1, . . . and takes actions
based on the observed states at these epochs. These
epochs do not have to be equally spaced, but we as-
sume that they repeat at the same times each day with
a total ofm epochs per day—for example, decisions are
made daily at 3 a.m., 6 a.m., . . ., 5 p.m., and 9 p.m. Note
that the queueing system still evolves on a continuous-
time basis as described in Section 3.1, and S(·) is a
continuous-time stochastic process with possible jumps

Figure 4. (Color online) Empirical Hourly Bed-Request (Arrival) and Discharge Time Distributions

Notes. The distributions are estimated from 2010 year data. For the discharge distributions, the solid curve is estimated from all wards, whereas
the dashed curve is estimated from the Card and Gastro wards, which have a later discharge peak than other wards. We set the discharge
probability in an hour to be 0 if less than 3% patients discharged in that hour from the data and renormalize the remaining probabilities. Avg,
average; dist, distribution.

Dai and Shi: Inpatient Overflow ADP
900 Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS

at the arrival and departure instances or at the decision
epochs. In this paper, we use the following conventions:
S(·) is assumed to be right continuous having left limits,
the action is taken at each epoch tk, S(tk−) is the left limit
of S(·) at tk and is called the preaction state, and S(tk) is
called the postaction state. In other words, the preaction
and postaction states used in the MDP are discrete-
time samples of the state process S(·) at given epochs
tk− and tk, respectively. In the next three subsections,
we further specify the MDP’s state space, action and
cost, and state transitions.

3.2.1. State Space. The system state is a (2 J + 1)-
dimensional vector

S(·) � (X1(·), . . . ,XJ(·),Y1(·), . . . ,YJ(·), h(·)).
Below, we use the postaction state S(tk) as an example
to introduce each coordinate; we can also adapt the
explanation for the preaction state S(tk−).

• Xj(tk) denotes the customer count for pool j,
meaning the sum of the number of class j waiting
customers and the number of customers in service at
pool j at epoch tk. The customers in service in pool j can
be from any customer class, but the waiting customers
must be from its primary class j.

• Yj(tk) denotes the to-be-discharged count for pool
j—that is, the number of customers that are ready to be
discharged between epoch tk and the start of the next
day. For example, if tk corresponds to 10 a.m. on a day,
thenY1(tk) � 8 says that there will be eight patients to be
discharged from pool 1 today between 10 a.m. and
midnight. However, because the discharge time hdis is
random, we do not know the precise times the eight
patients will leave today, except that they will leave
after 10 a.m.

• h(tk) � kmodm denotes the epoch index within
a day. In other words, h(tk)∈ {0, . . . ,m − 1} represents
the numerical order of epoch tk within the day that tk
belongs to, among the m total decision epochs. For
a general t≥ 0, we set h(t) � h(tk) if tk−1 < t≤ tk. Note that
because the arrival and discharge time patterns are
periodic with 1 day as the period, we still have a time-
homogeneous MDP when this epoch index is included
in the state space.

We use 6 to denote the state space for the MDP and
6h to denote the subspace of 6, which contains all
possible states S(·) with the epoch index being h. Be-
cause there is no overlap among epochs, we can par-
tition 6 into (60, . . . ,6m−1). In this paper, we assume
that the to-be-discharged information is available to the
decision maker because discharges are usually planned
at least 1 day ahead, and bed managers can access such
“planned discharge” information to make bed as-
signments. In section 6.6 of the online supplement of
Dai and Shi (2018), we test a setting where the to-be-

discharged information is not available. We can still
implement our ADP algorithmwith slightmodification
in this setting, and the resulting long-run average cost
is around 6% larger than that from the setting with full
to-be-discharged information.

3.2.2. Action and Cost. We denote the set of actions at
epoch tk as

f (tk) � { fij(tk), i≠ j, i � 1, . . . , J, j � 1, . . . , J},
where fij is the number of class i waiting cus-
tomers assigned to nonprimary pool j. As mentioned in
Section 3.1, the primary assignment has a high priority
and is immediately done when a primary customer
arrives or a primary server becomes available. Thus, the
primary assignment is excluded from the decisions at
each epoch, and the decision maker has two options:
do nothing, or make (some) overflow assignments. For
practical purposes, we assume fij(tk) ≤wij—that is, each
class is allowed to send a maximum number of wij
patients to a nonprimary ward at any decision epoch.
We setwij � 0 if pool j is not an overflowward for class i.
We define the one-epoch cost associated with action

f (tk) and the preaction state S(tk−) as

g(S(tk−), f (tk)) �
∑J
i�1

∑J
j≠i, j�1

Bij · fij(tk) +
∑J
j�1

Cj ·Qj(tk), (3)

where the first part denotes the overflow cost with Bij
being the per-patient overflow cost, and the second
part denotes the holding cost with Cj being the unit
holding cost and Qj(·) � (Xj(·) −Nj)+ being the num-
ber of waiting customers, or, say, queue length. For
convenience of analysis, we use the queue length
immediately after the action is taken at tk,Qj(tk) as
a proxy for the average queue length between two
decision epochs, where Qj(tk) � (Xj(tk) −Nj)+ can be
recovered via Xj(tk−) and f (tk).
Our objective is to find an optimal overflow policy

that minimizes the long-run average cost, defined as

lim
n→∞

1
n
E

(∑n
k�1

g(S(tk−), f (tk))
)
. (4)

See section B.4 in the online supplement for a nonlinear
holding cost setting, where patients who wait longer
have a more expensive holding cost.

3.2.3. State Transitions. We denote the preaction state
at a given epoch as s � (x1, . . . , xJ , y1, . . . , yJ , h) and
the preaction state after one-step transition as
s′ � (x′1, . . . , x′J , y′1, . . . , y′J , h′). We specify the transition
dynamics from s to s′ for nonmidnight epochs h �
1, . . . ,m − 1 here; see section 1.2 of the online sup-
plement in Dai and Shi (2018) for additional details,
including the transition probabilities p(s′|s, f).

Dai and Shi: Inpatient Overflow ADP
Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS 901

The state s′ is updated as

x′j � xj + aj − dj −
∑J

l≠ j,l�1
fjl +

∑J
i≠ j,i�1

fij, j � 1, . . . , J, (5)

y′j � yj − dj, j � 1, . . . , J, (6)

h′ � (h + 1) modm, (7)

where aj and dj denote the arrivals from class j cus-
tomers and the departures from pool j between h and
the next epoch h′, respectively,

∑J
l≠j,l�1 fjl represents

the total number of class j customers assigned to
nonprimary pools, and

∑J
i≠j,i�1 fij represents the total

number of customers from other classes that are
assigned to pool j. Given that dj patients have been
discharged between h and h′, the to-be-discharged
count at the next epoch h′ will be reduced by the
amount of dj, explaining Equation (6); Equations (5)
and (7) are straightforward. In the remainder of this
paper, we omit the operation “modm” when re-
ferring to a future epoch for h, and use the convention
that h + k � (h + k) modm for k � 1, 2,

4. Time-Decomposed Poisson Equation
In this section, we explore the time-periodic properties in
the arrivals and discharges and derive a time-decomposed
Poisson equation that will aid the design of the ADP al-
gorithm in Section 5.

For the long-run average cost problem, we need to
solve the Bellman equation

γ∗ + ν∗(s) � min
f

{
g(s, f) +∑

s′
p(s′|s, f)ν∗(s′)

}
, s∈6. (8)

Here, s denoting the preaction state, γ∗ is the optimal
(minimal) long-run average cost (per each decision
epoch), ν∗(·) is the optimal relative value function, g(s, f)
is the one-epoch cost defined in Equation (3), and
p(s′|s, f) is the transition probability. Unless specified
otherwise, in this paper s and ν∗ always refer to the
preaction state and the associated relative value
function, respectively. We make the following assump-
tion for convenience.

Assumption 1. A solution pair (γ∗, ν∗) exists for Equation (8)
and the stationary policy f ∗ with

f ∗(s) � argmin
f

{
g(s, f) +∑

s′
p(s′|s, f)ν∗(s′)

}
, s∈6, (9)

achieves the optimal long-run average cost γ∗, namely, f ∗ is
the optimal policy.

See Chapter 8 of Puterman (1994) for conditions
under which this assumption holds. We also assume
the stability condition

∑J
j�1

Λ j <
∑J
j�1

µjNj (10)

holds; otherwise, the queue length will explode, and γ∗
is not well defined.
For a given stationary policy f , let ν � {ν(s) : s∈6} be

the corresponding relative value function. Then, the
pair (f , ν) satisfies the following Poisson equation:

ν � g f − γe + Pfν, (11)

where γ is the long-run average cost associated with
policy f , e is the unit vector, and g f � {g(s, f) : s∈6}
and Pf � {p(s′|s, f) : s, s′ ∈6} are the one-epoch cost
vector and the transition probability matrix under
policy f , respectively. The optimal pair (f ∗,ν∗) satisfies
Equation (11).

Time Decomposition of the Poisson Equation
The Poisson Equation (11) applies to the entire state
space 6 and solves the relative value functions for allm
epochs at the same time. Now, we show that Equation
(11) can be decomposed into m self-contained equa-
tions for each subspace 6h, h � 0, . . . ,m − 1. Define νh

and ghf as the vectors of the relative value function and
cost (under the given stationary policy f) for all states in
6h, respectively, and Pi, j

f as the transition matrix for
transitions from all states in 6i to all states in 6j.

Proposition 1. For each h � 0, 1, . . . ,m − 1, we have

νh � (g̃hf −mγe) + P̃h
f ν

h. (12)

Here, P̃h
f and g̃hf denote the one-period transition

matrix (from states in epoch h of this period to states in
epoch h of the next period) and the one-period cumu-
lative cost, respectively—that is,

P̃h
f � Ph,h+1

f Ph+1,h+2
f ⋯Ph−1,h

f ,

g̃hf � ghf + Ph,h+1
f gh+1f +⋯ + (Ph,h+1

f ⋯Ph−2,h−1
f)gh−1f ,

and mγ is the long-run average cost over one period.
The proof is straightforward by realizing that most

Pi, j
f are zeros except those with j � (i + 1)modm, which

allows us to write Equation (11) as

νh� (
ghf − γe

) + Ph,h+1
f νh+1, h � 0, 1, . . . ,m − 1. (13)

See the proof in section 1.3 of the online supplement of
Dai and Shi (2018).
Note that themain difference between Equations (13)

and (12) is that in Equation (12), the value function on
both the left- and right-hand sides is νh. Thus, Equation
(12) is self-contained in the sense that we can solve νh

from it without the need of obtaining the relative value
functions for other time epochs. In other words, instead
of solving the original Poisson Equation (11) to get
ν � (ν0, . . . , νm−1) at the same time, we can solve the
sub-Equation (12) and get each νh, separately. This

Dai and Shi: Inpatient Overflow ADP
902 Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS

time-decomposition plays an important role in the
algorithm we develop in Section 5, by allowing us to
use different functional forms to approximate νh for
different h and separately estimate the coefficients
associated with the approximation.

5. Simulation-Based ADP: Approximate
Policy Iteration

A conventional method to solve Equation (8) is the
policy iteration (PI) algorithm; see, for example, section
8.6 in Puterman (1994). Specifically, start from an ar-
bitrary ν and n � 1,

1. Policy improvement: Obtain greedy policy f using

f (s) � argmin
f

{
g(s, f) +∑

s′
p(s′|s, f)ν(s′)

}
, ∀s∈6.

2. Policy evaluation: solve the Poisson Equation (11)
using policy f generated from above and obtain the
updated relative value function ν′.

3. Set ν � ν′, increase n by 1, and go to Step 1.
The algorithm stops when f is the same from the

current and previous iterations, which achieves the
optimal policy f ∗. However, steps 1 and 2 in each it-
eration are notoriously difficult to perform when the
state space size |6| is large. Indeed, even for a five-pool
system with just one midnight decision epoch and a
truncation at 60 for each Xj (j � 1, . . . , 5), it is almost
infeasible to just store all ν, because the state space size
is 605 � 777600000, let alone to solve the Poisson
equation.

To address this curse-of-dimensionality, we use
feature-based approximations for the relative value
functions and conduct simulation-based approximate
policy iteration (API). Below, we describe the general
framework of the ADP algorithm.

Relative Value Function Approximation
To deal with the high-dimensional state space, we
approximate the relative value function with a linear
combination of a finite set of basis functions, or, say,
features. To capture the time dependency, we approx-
imate the relative value functions separately for each
epoch. That is, for each h � 0, . . . ,m − 1,

νh(s) ≈ φh(s)βh � ∑Kh

i�1
βhi φ

h
i (x, y), ∀s ∈6h. (14)

Here, φh(s) � (φh
1(x, y), . . . ,φh

Kh(x, y)) is a set of Kh

basis functions, and βh � (βh1, . . . , βhKh)′ is the associated
coefficient vector. The specific form of the basis func-
tions, the coefficients, and the number of basis func-
tions Kh can all be time-dependent, and we use the
superscript h to emphasize the time-dependency. The
basis functions we choose in this paper is a combination
of quadratic functions in x and y, and a time-dependent

value function from an integrated single-pool system
(see Section 6).

Simulation-Based API
Using Equation (14), the approximate relative value
function is completely determined by the coefficient
vector βh and the prechosen basis functions. The fol-
lowing approximate policy iteration iteratively updates
the coefficient vectors. Start from an arbitrary co-
efficient vector (β0, . . . , βm−1) and set n � 1.

1. Policy improvement: simulate the J-pool system
using improved policy f (n), where the action at each
decision epoch is generated according to

f (n)(s) � argmin
f

{
g(s, f)

+ ∑
s′∈6h+1

p(s′|s, f)φh+1(s′) βh+1
}
, s∈6h. (15)

2. Policy evaluation: approximately solve the h sub-
equations in Equation (12) under the improved policy
f (n), and get an updated set of coefficients (β̂0, . . . , β̂m−1).
In this paper, we use temporal difference learning (TD
learning) with simulation samples collected in step 1 to
perform this update mechanism; see online supplement,
section A.1 for details.

3. Set (β0, . . . , βm−1) � (β̂0, . . . , β̂m−1), increase n by 1,
and go to step 1.
The algorithm stops when n equals a predetermined

number n∗ > 1, the total number of iterations. Note that
in step 1, we do not store ν(s) or the action rule f (n)(s) for
every state s∈6. Instead, we obtain the action f (n)(s) on-
the-go from Equation (15) whenever a state s is visited
during the simulation.

Remarks. The success of the ADP algorithm depends
on (1) choosing suitable basis functions to approximate
νh and (2) iteratively updating the coefficients associ-
ated with the basis functions. For (1), we leave the
thorough justification of the basis function choice to
Section 6. For (2), to deal with the time dependency, we
modify the standard TD learning procedure to approxi-
mately solve the time-decomposedPoisson Equation (12);
see online supplement, section A.1.
It is worth pointing out that our ADP algorithm is

scalable in the system size. The complexities of step 1
(policy improvement) and 2 (policy evaluation) are
bothO(MJ2), whereM is the number of simulated days
in Step 1, and J is the number of pools. See section 2
of the online supplement of Dai and Shi (2018) for
a detailed complexity analysis.

6. Basis Functions
To derive the basis functions, we study a special
midnight MDP to gain insights into its relative value
function and to support our choice of the midnight

Dai and Shi: Inpatient Overflow ADP
Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS 903

basis functions. Once the basis functions for the mid-
night epoch are chosen, we derive those for other
epochs via a backward induction.

Specifically, the midnight MDP we consider is a
special case of the MDP model developed in Section 3
by setting m � 1, with the only decision epoch every
day being set at the midnight epoch. Because we
generate new discharges at each midnight (follow-
ing from the two-time-scale service time setting in-
troduced in Section 3.1), it is easy to check that
this MDP is time-homogeneous and the customer
count x � (x1, . . . , xJ) is enough to capture the state.
We use νmid(x) to denote the associated optimal
relative value function, and propose the following
approximation:

νmid(x) ≈ νF1(x) + Vs
(∑

j
xj
)
. (16)

Here, νF1 is obtained from a fluid control problem and
approximates the overflow cost part in νmid(x), whereas
Vs(·) denotes the relative value function from an in-
tegrated single-pool system and approximates the holding
cost part in νmid(x). Below, in Sections 6.1 and 6.2, we
specify the basis functions for different epochs moti-
vated from approximation (16). In Section 6.3, we ex-
plain the rationale for approximation (16). In Section
6.4, we compare the long-run average costs from using
our proposed basis functions and those from exact
analysis in a two-pool setting.

6.1. Basis Functions for the Midnight Epoch
For a general multiepoch MDP with m> 1, at the
midnight epoch h � 0, the to-be-discharged counts
from the past day are zero because all patients should
have been discharged by that time, and the new to-be-
discharged counts for the next day are generated
based on the customer counts x � (x1, . . . , xJ) at this
midnight epoch. Thus, the midnight relative value
function, including the optimal one ν0,∗, only depends
on x, which is similar to νmid in the sense that both
value functions depend on x only. Though ν0,∗ does not
necessarily equal to νmid except when m � 1, we as-
sume that they have a similar structure and can be
approximated by Equation (16).

To facilitate finding basis functions for other epochs,
we need an even more parsimonious form to ap-
proximate ν0,∗ than Equation (16). The reason is that if
we directly use Equation (16), to obtain the value
functions for other epochs via a backward induction,
we need to prestore not only νF1(x) for all possible x, but
also the approximate value function for each epoch and
for each possible state. In other words, we will meet the
same computational challenge for conventional value
iteration. Based on the piecewise linear structure of

νF1(x), we instead propose the following basis functions
for the midnight epoch:

Vs
(∑

x
)
, x2j , xj, j � 1, . . . , J, (17)

and, correspondingly, the parsimonious approximation

ν0,∗(x) ≈ β0sVs

(∑
j
xj
)
+∑J

j�1
(β02jx2j + β01jxj) + β000. (18)

We provide more justifications on the choice of these
basis functions in section 5.1 of the online supplement of
Dai and Shi (2018). In particular, we show that starting
from approximation (18) and performing the backward
inductionm times (for the m epochs of a day), we get an
“updated”midnight value function. This updated value
function has the same form as Equation (18) if the op-
timal policy at midnight is work-conserving, thus pro-
viding some consistency for using Equation (18).

6.2. Basis Functions for Different Time Epochs
For epoch m − 1, the optimal relative value function
satisfies

γ + νm−1(s) �min
f

{
g(s, f) +∑

s′
p(s′| s, f)ν0(s′)

}
, s∈6m−1,

(19)

where ν0 is the optimal value function for the midnight
epoch, the epoch following epoch m − 1. For notational
convenience, we omit the * symbol from the optimal
relative valuation function.
We plug Equation (18) into Equation (19) to get an

approximate form for νm−1(s). By repeating the pro-
cedure, we derive the approximate form of νh for each
epoch h � m − 2, . . . , 1, respectively, using the ap-
proximate form of νh+1; see Section B.4 of the online
supplement for detailed algebra. These approximate
forms suggest the following basis functions:

Vh
s (x, y), x2j , xj, y2j , yj, xjyj, j � 1, . . . , J, (20)

for epoch h � m − 1, . . . , 1, where

Vh
s (x, y) �

∑∞
i�0

P(Ah � i)Vs

(∑
j
xj + i −∑

j
yj
)
, (21)

is the expectation over the one-dimensional single-pool
value function Vs(·) with respect to the random vari-
able Ah, and Ah follows a Poisson distribution with
mean

∑
j (∫ 1thλj(s)ds). In other words, Ah denotes the

total number of arrivals from all J classes that arrive
between the current epoch h and the most recent
midnight epoch. One thing worth mentioning is that,
using our proposed basis functions (20), the cost-to-go
function

∑
s′∈6h+1p(s′|s, f)φh+1(s′)βh+1 in Equation (15)

can be calculated efficiently for any given action f ,

Dai and Shi: Inpatient Overflow ADP
904 Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS

which allows us to obtain the optimal action quickly in
step 1 of the ADP algorithm. In particular, the one-
dimensional property of Vs(·) allows an easy evalua-
tion of the expectation; see online supplement, section
A.2 for an example.

6.3. Rationale for Approximation (16)
In this section, we focus on the special midnight MDP
withm � 1 and explain the rationale for approximation
(16). We assume that the customers are homogeneous
in the sense that the discharge rate µj � µ and the unit
holding cost Cj � C for j � 1, . . . , J. We also assume that
the state space is finite (by a state truncation of the
original MDP) and the Markov chain generated from
the optimal policy f ∗ is irreducible, such that the fol-
lowing representation for the relative value function
νmid(x) is well defined:

νmid(x) � Ex

[∑∞
k�0

(∑
i, j
Bij f

∗
ij − γ∗

v

)]

+Ex
∑∞
k�0

(∑J
j�1

C(Xj(k) −Nj)+ − γ∗
q

)[]
, (22)

where γ∗
q and γ∗

v are the optimal long-run average holding
cost and overflow cost, respectively, with γ∗ � γq+ γv,
and Ex denotes the expectation conditional on Xj(0) �
xj for j � 1, . . . , J. See Puterman (1994) for details. Note
that the assumptions of homogeneous customers and
finite state space are only made here to justify Ap-
proximation (16); our modeling framework and devel-
oped ADP algorithm do not need these assumptions.

Comparing Equation (22) with Equation (16) shows
that the approximation is based on

Ex

[∑∞
k�0

(∑
i, j
Bij f

∗
ij − γ∗

v

)]
≈ νF1(x), (23)

Ex
∑∞
k�0

(∑J
j�1

C(Xj(k) −Nj)+ − γ∗
q

)[]
≈ Vs

(∑
j
xj
)
. (24)

The explanations, first for Equation (24) and then for
Equation (23), are as follows.

Work-Conserving Policy and Single-Pool System. We
say a policy f is a work-conserving policy if

∑J
j�1

(X f
j (k) −Nj)+ �

(∑J
j�1

Xf
j (k) −

∑J
j�1

Nj

)+
, k � 0, 1, . . . ,

(25)

where Xf
j (k) denotes the postaction state under policy

f at midnight of day k. In other words, after taking
the action at each midnight, no server should be idle
when any of the J pools has a positive queue length.
Condition (25) also requires the system to have full

connectivity between the customer classes and servers—
that is, a customer can be assigned to any of the pools
via either primary or overflow assignments. Full con-
nectivity is more restrictive than the conventional
complete resource pooling condition for heavy traffic
analysis; see, for example, Bell and Williams (2005).
Under a work-conserving policy f , the J-pool system
operates as an integrated single-pool system. The fol-
lowing proposition says that we can use the relative
value function of this single-pool system, Vs(·), to
capture the holding cost in the J-pool system.

Proposition 2. Assume f is a policy that satisfies Equation
(25). We have

Ex
∑∞
k�0

(∑J
j�1

C(X f
j (k) −Nj)+ − γ f

q

)[]
� Vs

(∑
j
xj
)
. (26)

Here, Vs(·) denotes the relative value function of
a single-pool system using the same unit holding
cost C, and we show it has a similar representation as
Equation (22). This single-pool system has a total of
N � ∑

j Nj servers, serving a single class of customers
whose daily arrival follows a Poisson distribution
with mean

∑
j Λj; each customer in service is dis-

charged with probability µ each day. The proof is based
on a coupling argument between the J-pool system
and the single-pool system; see section 1.4 of the
online supplement in Dai and Shi (2018) for a sketch of
the proof.

Note that the left side of Equation (26) is not nec-
essarily equal to that of Equation (24), because the latter
corresponds to the holding cost under the optimal
policy f ∗. Approximation (24) acquires an equality when
f ∗ is indeed work-conserving. Our numerical experi-
ments suggest that when B is not significantly larger than
C, f ∗ is work-conserving or close to work-conserving in
the midnight MDP. This observation is also consistent
with the current practice in our partner hospital—that
is, aggressive overflow during the night and early
morning; see discussions in Section 1.2.

Fluid Model for the Overflow Cost. To get νF1(x) that is
specified below in Equation (30), we consider the fluid
model associated with the J-pool system and an opti-
mal fluid control problem to minimize the long-run
average cost, defined as

lim
n→∞

1
n

∑n
k�0

(∑
i, j
Bij f̄ij(k) +

∑J
j�1

C(x̄j(k) −Nj)+
)
, (27)

where x̄(k) � (x̄1(k), . . . , x̄J(k)) denotes the post-action
fluid customer count at midnight of each day k, and
f̄ (k) � { f̄ ij(k)} denotes the fluid action and is defined in
a similar way as f in Section 3.2.2, except that f̄ ij values
can be nonintegers. This fluid control problem can be

Dai and Shi: Inpatient Overflow ADP
Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS 905

viewed as the deterministic version of the midnight
MDP. Similar to Equation (22), we represent the op-
timal relative value function in this fluid control
problem as

νF(x) � ∑∞
k�0

(∑
i, j
Bij f̄ ∗ij(k) − γ̄∗

v

)

+∑∞
k�0

(∑J
j�1

C(x̄∗j (k) −Nj)+ − γ̄∗
q

)
, (28)

where { f̄ ∗ij(k)} values are the optimal actions solved
from Equation (27), {x̄∗j (k)} values form the optimal
system “path” when starting from x̄(0) � x and im-
plementing the optimal fluid actions, and γ̄∗

v and γ̄∗
q

denote the optimal long-run average (fluid) holding
and overflow costs, respectively. We can efficiently
solve νF(x) by a linear programming formulation. See
section 3 of the online supplement of Dai and Shi (2018)
for details, including the transition dynamics for the
fluid model.

Similar to the results for a certain class of queueing
networks, one can prove

lim
| |x| |→∞

|νF(x) − νmid(x)|
| |x| |2

� 0, (29)

see, for example, theorem 7 in Meyn (2000). In other
words, νF serves as a good approximation for νmid
when the system starts from a more congested state.
Comparing Equation (28) with Equation (22), the first
part of νF, denoted as

νF1 (x) �
∑∞
k�0

(∑
i, j
Bij f̄

∗
ij(k) − γ̄∗

v

)
, (30)

provides an approximation to the overflow cost part in
νmid. This is why we propose Equation (23).

Comparison with Fluid Basis Functions. One can di-
rectly use νF, instead of Equation (16), to approximate
νmid. However, this approximation is quite rough. In
particular, when ρj � Λj/(µjNj)< 1 and the starting
state satisfies xj <Nj for all j, the fluid holding and
overflow cost are both 0, and thus, νF(x) � 0 for all such
x, which is obviously not the case for vmid(x). Indeed,
our approximation (16) is a refinement to νF by
replacing its second part,

∑∞
k�0 (∑J

j�1C(x̄∗j (k) −Nj)+ −γ̄∗
q),

with Vs(∑jxj). See Figures 1 and 2 in the online ap-
pendix for examples of the remarkably good approx-
imation quality of Equation (16) in a two-pool setting.
More importantly, we use Equation (16) to guide the
choice of basis functions. These basis functions re-
quire fewer coefficients to be estimated comparing to
“fluid” basis functions developed from νF as suggested
by Moallemi et al. (2008) and Veatch (2005). Follow-
ing their approach, the basis functions are quadratic

functions with all the interaction terms and the size is
O(J2), whereas the size of our proposed basis functions
is O(J). Moreover, we find that using the fluid basis
functions often leads to cost and policy oscillation—
that is, the chattering issue mentioned in Bertsekas
(2012, section 6.4), whereas using our proposed basis
functions tends to have a more stable performance; see
section 6.1 of the online supplement of Dai and Shi
(2018) for an example.

6.4. Performance of Basis Functions in a
Two-Pool Setting

To demonstrate the accuracy of the ADP algorithm,
ideally we would like to compare the long-run average
cost from the ADP algorithm with the “true” optimal
value solved from the conventional policy iteration.
Because of the curse-of-dimensionality for conventional
PI, we can only perform such comparison in a two-pool
setting; for a general multipool setting, we compare the
ADP policy with a few benchmark policies in Section 7.
Considering that our ADP is simulation based, we run
simulation experiments (with a common underlying
random number generator) to compare the long-run
average costs.
Table 1 reports performance of the ADP algorithm in

a two-pool, eight-epoch setting, where the homoge-
neous customer assumption used to justify approxi-
mation (16) holds. For comparison purposes, we report
performance from using our proposed basis functions
and that from using a set of naive functions (xi, yi, xiyi),
i � 1, 2. We also conduct experiments in nonhomo-
geneous settings where µ, B, or C are different for the
two classes of patients; see section 5.2 of the online
supplement in Dai and Shi (2018). These numerical
results show that the ADP algorithm, along with the
proposed basis functions, produces overflow policies
that lead to near-optimal performance. The optimal-
ity gap, defined as ADP cost− optimal cost

optimal cost , is less than 5%
among all tested experiments.

7. Numerical Results for a Five-Pool Model
In this section, we evaluate the ADP algorithm in a five-
pool simulation model populated with parameters
estimated from real hospital data. We refer to this
simulation model as the extended model because it in-
corporates more realistic features than the basic model
we introduced in Section 3. In Section 7.1, we specify
this extended simulation model. In Section 7.2, we
compare the long-run average costs from the ADP
policy and three naive policies under a variety of system
conditions. We also summarize insights gained from the
numerical results there.

7.1. Extended Simulation Model
The extended model has five parallel server pools,
serving patients from five medical specialties: General

Dai and Shi: Inpatient Overflow ADP
906 Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS

Medicine (GeMed), Surgery (Surg), Orthopedic (Or-
tho), Cardiology (Card), and Other Medicine (OtMed),
with the last one including Gastroenterology and
Neurology. The five chosen specialties account for 75%
of the total inpatient admissions and 85% of admis-
sions from ED. We exclude three specialties (Oncology,
Renal, and Respiratory) from the extended model be-
cause of their small volume and because their patients
usually require specialized rooms and equipment.
Below, we specify (1) features of the extended model
that deviate from those in the basic model; (2) parameter
estimation; and (3) model validation. Note that the basic
and extended models are essentially two different
(though closely connected) models, whereas the ADP
algorithm is developed under the framework of the basic
model. To obtain an “ADP policy” for the extended
model from the ADP algorithm, we need to establish
certain mapping between the basic and extended
models; see online appendix, section B.3 for details.

Features of the Extended Model. Within each of the
five specialties, we further differentiate patients by
their admission sources and classify them into: (1) ED
patients—patients admitted from ED, (2) EL patients—
elective admissions, and (3) TR patients—internal
transfers from other hospital units, such as ICU or
operating rooms. For each specialty, we generate ar-
rivals from each admission source separately and use
three separate buffers, unlike the basic model, to hold
waiting patients from the three sources—that is, the
extended model has 15 arrival streams and 15 buffers.
We enforce a priority rule for the primary bed as-
signment: when a primary bed becomes available, EL
patients have the highest priority, followed by ED and
then TR patients. This priority setting is same as that in

Powell et al. (2011) and Shi et al. (2016); see the latter for
the rationale.We have also tested other priority settings
such as giving TR patients higher priority than ED
patients, and found that the ADP performance is not
very sensitive to the priority settings. We specify the
overflow assignment in online appendix, section B.3.
Note that hospital managers may not strictly follow
one particular priority rule in practice. Our modeling
framework and ADP algorithm are meant for deci-
sion support, and are flexible to allow “overruling” if
managers decide to use a different priority setting. If
such an overruling happens, the model simply moves
to the next decision epoch by updating states using the
actual decision and realized arrivals and discharges.
Empirical study shows that the arrival processes of

ED patients follow nonhomogeneous Poisson pro-
cesses, but not for EL or TR patients (Shi et al. 2014).
Thus, in the extendedmodel we generate the arrivals of
EL or TR patients by using a two-step procedure: (1)
generate a total number ofAk arrivals from an empirical
distribution on day k, and (2) generate an arrival time
on day k for each of these Ak patients according to an
empirical bed-request time distribution. The service
time of each patient follows Equation (2); however, we
allow the LOS distributions to be both specialty- and
admission-source-dependent, relaxing the pool-dependent
assumptions made in the basic model. Note that in the
baseline scenario, we still assume that the LOS distri-
butions are geometric; in Section 7.2, we demonstrate
results from using empirical LOS distributions. All
other modeling features not mentioned here remain
the same as in the basic model.

Parameter Estimation. We populate the extended
simulation model with a 2010 data set from our partner

Table 1. Homogeneous Two-Pool MDP: Eight Decision Epochs

B � 6 B � 12 B � 30

Using optimal value functions 22.41 ± 0.08 27.02 ± 0.13 37.21 ± 0.08
ADP (proposed basis) optimality gap 22.78 ± 0.06; (2%) 27.57 ± 0.12; (2%) 38.70 ± 0.06; (6%)
ADP (naive basis) optimality gap 23.94 ± 0.12; (7%) 29.86 ± 0.13; (11%) 41.48 ± 0.14; (11%)

Notes. We set N1 � 28, N2 � 32, Λ1 � Λ2 � 6.25, µ1 � µ2 � 1/4, C1 � C2 � 3.0, and B � B12 � B21. The
number after the ± sign is the half-width of the corresponding 95% confidence interval. Numbers
following the semi-colons in second and third rows are the corresponding optimality gap.

Table 2. Parameter Settings on the Daily-Scale for the Five-Pool Model

GeMed Surg Ortho Card OtMed Total

Λj 16.92 0.31 0.66 10.76 4.39 5.07 7.94 2.34 2.61 10.99 3.87 4.39 11.75 1.75 1.21 84.96
Average LOS 5.24 5.47 5.94 3.25 4.71 5.71 4.65 6.15 5.03 4.01 4.15 4.36 3.86 3.69 5.36 4.48
Nj 85 104 115 67 54 425
ρj 111% 81% 56% 118% 108% 90%

Notes. We use a 2010 data set, and the empirical statistics are documented in Shi et al. (2014). In the first two rows (Λj and average LOS), each of
the three entries reports the averages for ED, EL, and TR patients, respectively. In the last row, ρj denotes the implied utilization, defined as
Λj/(µ̄jNj), where 1/µ̄j is the average LOS across all admission sources for specialty j.

Dai and Shi: Inpatient Overflow ADP
Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS 907

hospital. Table 2 reports the daily-scale parameters. For
Nj, because the number of beds were changing during
2010, we use the average number of beds allocated for
each specialty and fine tune the values to match the
simulation output with various empirical performance.
Note that the actual hospital bed configuration was
suboptimal—certain specialties (e.g., GeMed andCard)
were allocated with insufficient beds, and their implied
utilization values exceed 100%. In Section 7.2, we
test a hypothetical “balanced” setting, where the bed
configuration is done reasonably well, with the implied
utilization of each server pool being < 100%.

For the hourly scale parameters, we estimate the
hourly arrival proportions λj(t)/Λj from the corre-
sponding empirical patterns for each admission source.
Because the five specialties have similar hourly arrival
patterns, we pool the data to estimate λj(t)/Λj for each
class j. Thus, the five customer classes have “syn-
chronized” arrival patterns. Figure 4(a) illustrates the
ED arrival pattern; online supplement, Section B.5
shows the EL and TR arrival patterns (as well as the
daily arrival distributions). However, the discharge
patterns are not synchronized. As suggested from the
data, we use a late discharge time distribution hdis for
customers departed from the Card and OtMed server
pools (see the dashed curve in Figure 4(b)) and use the
average discharge time distribution for all other pools
(see the solid curve in Figure 4(b)).

Model Validation and Computational Settings. We
perform a detailed model validation in online ap-
pendix, section B.2. We show that this extended
simulation model, populated with the parameters
described above, produces performance curves that
are close to the empirical ones. Computational set-
tings for the simulation experiments are detailed in
online appendix, section B.1.

7.2. Comparing the ADP Policy with Naive Policies
In this section, we compare the ADP policy against three
naive policies—empirical, full-sharing, and midnight
policies—introduced in Section 1.2. We focus on the

average cost comparison using simulation experiments.
We consider an eight-epoch setting where the overflow
decision is made every three hours throughout each day.
We assume that the unit holding costCj � 6.0 is the same
for each class j and that the overflow cost for each class
follows the same cost scheme, where the cost of
assigning a patient to a preferred overflow ward is five
less than that to a secondary overflow ward. This
difference in the overflow costs reflects the preference
for using the preferred overflow ward. We use the cost
pair—for example, B � (15, 20)—to denote the overflow
cost to the preferred and secondary wards, respec-
tively, across all classes, and we vary the cost pair from
(15, 20) to (40, 45) in the experiments. Our simulation
model and algorithm definitely allow nonhomogeneous
holding costs or overflow cost pairs; see section 6.6 of the
online supplement of Dai and Shi 2018 for additional
experiments.
Table 3 summarizes the long-run average daily

costs under different overflow cost pairs. The results
reported in the introduction correspond to the baseline
scenario with B � (30, 35). The ADP policy generally
outperforms the three naive policies by 10%–20%,
sometimes by more than 30%. We also observe that
when the overflow costs are lower, the ADP policy
behaves more like the full-sharing policy, whereas
when the overflow costs are higher, the ADP policy
behaves more like the empirical or midnight policy.
These observations are expected because it is bene-
ficial to pool beds when the cost of pooling is cheaper,
and vice versa. We observe similar phenomena when
using nonhomogeneous holding costs and overflow
cost pairs with larger or smaller gaps.
Table 4 reports the long-run average costs of the four

policies under a variety of system conditions. Below,
we discuss the findings and our insights.

Impact of System Load. We observe that when the
system load increases, the benefit gained from the ADP
policy, measured by the relative difference in the long-
run average cost, decreases. To explain this observation,
recall that the naive policies perform a full resource

Table 3. Long-Run Average Daily Costs of the ADP Policy and Three Naive Policies

C � 6.0 ADP policy Empirical Full-sharing Midnight

B � (15, 20) 231.29 290.05 (25.4%) 259.96 (12.4%) 436.92 (88.9%)
B � (20, 25) 284.34 347.09 (22.1%) 325.58 (14.5%) 482.24 (69.6%)
B � (25, 30) 337.35 404.13 (19.8%) 391.20 (16.0%) 527.57 (56.4%)
B � (30, 35) 390.36 461.16 (18.1%) 456.82 (17.0%) 572.90 (46.8%)
B � (35, 40) 443.30 518.20 (16.9%) 522.45 (17.9%) 618.22 (39.5%)
B � (40, 45) 496.23 575.23 (15.9%) 588.07 (18.5%) 663.55 (33.7%)
Notes. Number inside parentheses in columns 2–4 denotes the relative difference in the long-run average
cost between the ADP policy and the column’s naive policy. The half-width of the 95% confidence
interval for the reported average cost is between 0.1 and 0.5 and is omitted from the table.

Dai and Shi: Inpatient Overflow ADP
908 Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS

sharing at least once a day (e.g., at the midnight epoch
for the midnight policy). Thus, the ADP policy mainly
gains its advantage by using better overflow decisions
during the day. However, in a more heavily loaded
system, fewer beds are available during the day and,
thus, less opportunity for overflow assignments. In
addition, in a more heavily loaded system, the over-
all congestion level is mainly driven by daily-scale
parameters—for example, average LOS and capacity—
whereas overflow decisions made during the day
mainly affect hourly performance and have less impact
on overall congestion; see Dai and Shi (2017) for a more
rigorous argument on this daily–hourly difference
using a two-time-scale framework. Correspondingly,
when the system load decreases, we observe a larger
benefit gained from the ADP policy. This benefit rea-
ches the largest when the system is around 84% uti-
lized, where the relative difference between the ADP
policy and the best-performed naive policy increases to
28%. This benefit starts to decrease as the system load
further decreases, because overflow assignments occur
less often when each pool has more capacity to handle
its patient demand. When each pool has sufficiently
low utilization (< 75% in our experiments), all rea-
sonable overflow policies perform similarly because
overflow is rarely needed; see section 6.6 of the online
supplement for the details.

Impact of Bed Allocations. Comparing to the baseline
setting, we observe a smaller benefit gained from the
ADP policy in the balanced setting. The reason is that
when the bed allocation is done more appropriately
with each pool being able to serve its patients without
overflow, fewer overflow assignments are needed,
especially for specialties which have > 100% utilization
in the baseline setting—for example, GeMed and Card.
Indeed, in a perfectly balanced setting, where each pool
has the same utilization (90%), the relative difference
between the ADP policy and the empirical policy (the
best performer of the naive policies) reduces to only 6%.

Impact of LOS Distributions. In one set of experiments,
we change the geometric LOS distributions to empirical
distributions; see online appendix, section B.5. To
implement the ADP algorithm in this system with
empirical LOS distributions, we generate actions from
Equation (15) and pretend that the LOS distributions
are geometric—that is, we use the same transition
probabilities p(s′ |s, f) as in the geometric setting to
evaluate the cost-to-go function. The coefficients
used in the algorithm are trained in the corresponding
setting with geometric LOS distributions. Referring
again to Table 4, the last row shows that the ADP still
outperforms the naive policies, with a similar magni-
tude of improvements as we observed in the geometric
setting (baseline scenario). A potential reason for this
good performance is that the empirical LOS distribu-
tions are not far from geometric distributions, espe-
cially on the tail side; see the plots in online appendix,
section B.5 for an example. Caution should be exercised
when applying our ADP algorithm to other hospital
settings with different nongeometric LOS distribu-
tions. We leave to future research to comprehensively
examine the performance of our ADP under other LOS
distributions and to improve the modeling frame-
work and algorithm to accommodate general LOS
distributions.

Other Sensitivity Analyses. We have performed ad-
ditional sensitivity analyses, including using different
discharge time distributions or priority settings and
approximating gender effect by scaling down the
system size by half. The ADP performance is robust in
the sense that it gains a similar magnitude of benefit
over the naive policies, as we see in this section, and our
main insights remain similar; see section 6.6 of the
online supplement for more details.

8. Conclusions and Future Work
In this paper, we model hospital inpatient flow as
a multiclass, multipool parallel queueing network and

Table 4. Long-Run Average Daily Costs of the ADP Policy and Other Naive Policies

Same C � 6.0 ADP policy Empirical Full-sharing Midnight

Baseline 390.36 461.16 (18.1%) 456.82 (17.0%) 572.90 (46.8%)
Increase load 471.99 534.44 (13.2%) 532.23 (12.8%) 645.89 (36.8%)
Decrease load 340.55 412.41 (21.1%) 407.51 (19.7%) 518.81 (52.3%)
Balanced allocation 166.77 188.09 (12.8%) 216.94 (30.1%) 199.73 (19.8%)
Empirical LOS 389.63 460.35 (18.2%) 455.98 (17.0%) 571.97 (46.8%)
Notes. The four scenarios reported in rows 2–5 use the same parameter setting as in the baseline scenario
except one of the following: (1) increasing loadwith {Nj} � {83, 102, 111, 66, 53}; (2) decreasing loadwith
{Nj} � {87, 106, 119, 68, 55}; (3) more balanced bed allocation with {Nj} � {103, 97, 78, 82, 65}; (4) using
empirical LOS distributions for patients of each specialty and admission source. Number inside
parentheses in columns 2–4 denotes the relative difference in the long-run average cost between the ADP
policy and the column’s naive policy. The half-width of the 95% confidence interval for the reported
average cost is between 0.15 and 0.5 and is omitted from the table.

Dai and Shi: Inpatient Overflow ADP
Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS 909

formulate the inpatient overflow decision problem as
a discrete-time, infinite-horizon average cost MDP. The
MDP explicitly incorporates time-varying features
into both the patient arrival and discharge processes.
To tackle the curse-of-dimensionality, we develop
a simulation-based ADP algorithm, where the relative
value functions are approximated by carefully selected
basis functions. We demonstrate, via extensive numer-
ical experiments, that the ADP algorithm is efficient in
finding good overflow policies in relatively realistic
settings and can help hospital managers to devise
operational strategies to achieve the desired perfor-
mance. Sensitivity analyses also suggest that the ADP
algorithm obtains larger benefit when a hospital is
moderately loaded and bed allocation is not perfectly
balanced.

The work presented in this paper has several limi-
tations. First, because of the complexity of hospital
operations, our developed queueing models, even the
extended simulation model, cannot fully replicate the
real system. For example, a patient may be transferred
back to a primary ward if initially being assigned to
a nonprimary one. Although such transfers are not
frequent (< 20% among overflowpatients) in our partner
hospital, they have been promoted in some hospitals
(Thompson et al. 2009). Our model does not capture
transfers between generalwards and other hospital units
such as ICU (Helm and Oyen 2014); activities in these
units could impact patients’ stay in the general wards.
We assume discrete decision epochs, whereas real bed
assignments may occur in a more dynamic fashion.
Nevertheless, the main purpose of this paper is to de-
velop a sophisticated algorithm for a challenging over-
flow problem, where the underlying models are highly
relevant to hospital operations. We leave for future re-
search to make the queueing models more realistic and
to adapt theADP algorithm to newmodels. In particular,
explicitly incorporating general LOS distributions and
subclasses within a medical specialty (to capture patient
gender, admission source, etc.) in the modeling frame-
work could potentially give better decisions. We would
also like to alert readers that the five-pool simulation
model extensively used in this paper is populated with
data from one particular hospital. Different hospitals
may have different characteristics—for example, LOS
distributions could be very different from geometric
distributions, and patient–bed configuration could be
different from that in Figure 1. Implementing the ADP
algorithm in a real hospital environment needs sub-
stantial efforts and “customization” in calibrating the
decision models.

Second, we demonstrate the performance of the ADP
algorithm mainly through numerical experiments. An
important future work is to establish performance
bounds on this algorithm. Because our setting is novel
(long-run average cost problem with time-varying

arrival and departure patterns), one would need to
develop new methodologies to establish such bounds,
potentially based on existing frameworks. One possi-
bility is to use the information relaxation framework
established in Brown et al. (2010) and Brown andHaugh
(2017), which has gained success in various finite- and
infinite-horizon discounted cost settings.
Third, although in this paper we mainly use Bij and

Cj as tuning parameters, estimating these cost pa-
rameters is a nontrivial task and remains a viable topic
in empirical research. Thompson et al. (2009) propose
a method to interactively learn the cost structures by
letting the decision makers to make choices under
hypothetical scenarios. Park et al. (2019) use the ED
physician’s behavior—when to take a new patient from
the waiting room—to identify the holding cost;
a similar technique could be borrowed to our inpatient
overflow setting.

Acknowledgments
The authors thank the associate editor and two anonymous
reviewers for constructive comments to improve this paper.
The authors thank Anton Braverman, Jiekun Feng, and
Shuangchi He for improving the exposition of the paper.

References
Adelman D, Mersereau AJ (2008) Relaxations of weakly coupled

stochastic dynamic programs. Oper. Res. 56(3):712–727.
Armony M, Israelit S, Mandelbaum A, Marmor Y, Tseytlin Y, Yom-

Tov G (2015) Patient flow in hospitals: A data-based queueing
perspective. Stochastic Systems 5(1):146–194.

Armony M, Ward AR (2010) Fair dynamic routing in large-scale
heterogeneous-server systems. Oper. Res. 58(3):624–637.

Baron O, Berman O, Krass D, Wang J (2017) Strategic idleness and
dynamic scheduling in an open-shop service network: Case study
and analysis.Manufacturing Service Oper. Management 19(1):52–71.

Bell SL, Williams RJ (2005) Dynamic scheduling of a parallel server
system in heavy traffic with complete resource pooling: Asymptotic
optimality of a threshold policy. Electronic J. Probab. 10(3):1044–1115.

Bertsekas DP (2012) Dynamic Programming and Optimal Control: Ap-
proximate Dynamic Programming, vol. II (Athena Scientific, Bel-
mont, MA).

Best TJ, Sandkç B, Eisenstein DD, Meltzer DO (2015) Managing
hospital inpatient bed capacity through partitioning care into
focused wings. Manufacturing Service Oper. Management 17(2):
157–176.

Brown DB, Haugh MB (2017) Information relaxation bounds for
infinite horizon Markov decision processes. Oper. Res. 65(5):
1355–1379.

BrownDB, Smith JE, Sun P (2010) Information relaxations and duality
in stochastic dynamic programs. Oper. Res. 58(4):785–801.

Chan CW, Dong J, Green LV (2017) Queues with time-varying ar-
rivals and inspections with applications to hospital discharge
policies. Oper. Res. 65(2):469–495.

Dai JG, Shi P (2017) A two-time-scale approach to time-varying
queues in hospital inpatient flow management. Oper. Res. 65(2):
514–536.

Dai JG, Shi P (2018) Online supplement for “Inpatient overflow:
An approximate dynamic programming approach.” Working
paper, Purdue University, West Lafayette, IN.

Dai JG, Tezcan T (2008) Optimal control of parallel server systems with
many servers in heavy traffic. Queueing Systems 59(2):95–134.

Dai and Shi: Inpatient Overflow ADP
910 Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS

de Farias DP, Roy BV (2003) The linear programming approach
to approximate dynamic programming.Oper. Res. 51(6):850–865.

Dong J, Perry O (2017) Queueing models for patient-flow dynamics
in inpatientwards.Working paper, ColumbiaUniversity, NewYork.

Feldman J, Liu N, Topaloglu H, Ziya S (2014) Appointment sched-
uling under patient preference and no-show behavior.Oper. Res.
62(4):794–811.

Gesenway D (2010) Having problems finding your patients?.
Accessed September 4, 2018, http://www.todayshospitalist.com/
Having-problems-finding-your-patients/.

Gurvich I, Whitt W (2009a) Queue-and-idleness-ratio controls in
many-server service systems. Math. Oper. Res. 34(2):363–396.

Gurvich I, Whitt W (2009b) Scheduling flexible servers with convex
delay costs in many-server service systems. Manufacturing Ser-
vice Oper. Management 11(2):237–253.

Gurvich I,WhittW (2010) Service-level differentiation inmany-server
service systems via queue-ratio routing.Oper. Res. 58(2):316–328.

Han S, He S, Oh HC (2016) Models for hospital inpatient operations:
A data driven optimization approach for reducing ED boarding
times.Presentation at INFORMS2016 (INFORMS,Catonsville,MD).

He S, Sim M, Zhang M (2019) Data-driven patient scheduling in
emergency departments: A hybrid robust-stochastic approach.
Management Sci., ePub ahead of print May 1, https://doi.org/
10.1287/mnsc.2018.3145.

Helm JE, Oyen MPV (2014) Design and optimization methods for
elective hospital admissions. Oper. Res. 62(6):1265–1282.

Hoot NR, Aronsky D (2008) Systematic review of emergency de-
partment crowding: Causes, effects, and solutions. Ann Emerg
Med 52(2):126–136.

Huang J, Carmeli B, Mandelbaum A (2015) Control of patient flow in
emergency departments, or multiclass queues with deadlines
and feedback. Oper. Res. 63(4):892–908.

Huang Q, Thind A, Dreyer J, Zaric G (2010) The impact of delays to
admission from the emergency department on inpatient out-
comes. BMC Emergency Medicine 10(1):16.

Khademi A, Saure DR, Schaefer AJ, Braithwaite RS, Roberts MS
(2015) The price of nonabandonment: HIV in resource-limited
settings. Manufacturing Service Oper. Management 17(4):554–570.

Kilinc D, Saghafian S, Traub SJ (2016) Dynamic assignment of patients
to primary and secondary inpatient units: Is patience a virtue.
Working paper, Harvard University, Cambridge, MA.

Koole G, Pot A (2005) Approximate dynamic programming in multi-
skill call centers. Proc. Winter Simulation Conf. (IEEE, New York).

MandelbaumA,Momcilovic P, Tseytlin Y (2012) On fair routing from
emergency departments to hospital wards: QED queues with
heterogeneous servers. Management Sci. 58(7):1273–1291.

Maxwell MS, Henderson SG, Topaloglu H (2013) Tuning approxi-
mate dynamic programming policies for ambulance redeploy-
ment via direct search. Stochastics Systems 3(2):322–361.

Maxwell MS, Restrepo M, Henderson SG, Topaloglu H (2010) Ap-
proximate dynamic programming for ambulance redeployment.
INFORMS J. Comput. 22(2):266–281.

Meyn SP (2000) Feedback regulation for sequencing and routing in
multiclass queueing networks. SIAM J. Control Optim. 40(3):741–776

Moallemi CC, Kumar S, Roy BV (2008) Approximate and data-driven
dynamic programming for queueing networks. Working pa-
per, Stanford University, Stanford, CA.

National University Hospital (2011) BMU Training Guide: Inpatient
Operations (National University Hospital Inpatient Department,
Singapore).

PangG, YaoDD (2018)Heavy-traffic limits for amany-server queueing
network with switchover. Adv. Appl. Probab. 45(3):645–672.

Park E, Ding Y, NagarajanM, Grafstein E (2019) Patient prioritization
in emergency department triage systems: An empirical study of
Canadian triage and acuity scale (CTAS).Manufacturing Service Oper.

Management, ePub ahead of print April 8, https://doi.org/10.1287/
msom.2018.0719.

Perry O, Whitt W (2009) Responding to unexpected overloads in
large-scale service systems. Management Sci. 55(8):1353–1367.

Perry O, Whittv W (2011a) A fluid approximation for service systems
responding to unexpected overloads.Oper. Res. 59(5):1159–1170.

Perry O, Whitt W (2011b) An ODE for an overloaded X model in-
volving a stochastic averaging principle. Stochastics Systems 1(1):
59–108.

Pines JM, Batt RJ, Hilton JA, Terwiesch C (2011) The financial con-
sequences of lost demand and reducing boarding in hospital
emergency departments.Ann. EmergencyMedicine 58(4):331–340.

Powell ES, Khare RK, Venkatesh AK, Roo BDV, Adams JG, Reinhardt
G (2011) The relationship between inpatient discharge timing
and emergency department boarding. J. EmergencyMedicine 42(2):
186–196.

Powell WB (2011) Approximate Dynamic Programming: Solving the
Curses of Dimensionality. Wiley Series in Probability and Statistics
(Wiley-Interscience, Hoboken, NJ).

Puterman ML (1994) Markov Decision Processes: Discrete Stochastic
Dynamic Programming (John Wiley, New York).

Rabin E, Kocher K, McClelland M, Pines J, Hwang U, Rathlev N,
Asplin B, Trueger NS, Weber E (2012) Solutions to emergency
department ‘boarding’ and crowding are underused and may
need to be legislated. Health Affairs 31(8):1757–1766.

Roubos D, Bhulai S (2010) Approximate dynamic programming
techniques for the control of time-varying queuing systems
applied to call centers with abandonments and retrials. Probab.
Engrg. Inform. Sci. 24(1):27–45.

Samiedaluie S, Kucukyazici B, Verter V, Zhang D (2017) Managing
patient admissions in a neurology ward. Oper. Res. 65(3):
635–656.

Shi P, ChouMC, Dai JG, Ding D, Sim J (2016) Models and insights for
hospital inpatient operations: Time-dependent ED boarding
time. Management Sci. 62(1):1–28.

Shi P, Dai JG, Ding D, (James) Ang SK, Chou M, Jin X, Sim J (2014)
Patient flow from emergency department to inpatient wards:
Empirical observations from a Singaporean hospital. Working
paper, Purdue University, West Lafayette, IN.

Singer AJ, Jr. Thode HC, Viccellio P, Pines JM (2011) The association
between length of emergency department boarding and mor-
tality. Academic Emergency Medicine 18(12):1324–1329.

Song H, Tucker A, Graue R, Moravick S, Yang J (2018) Capacity
pooling in hospitals: The hidden consequences of off-service place-
ment. Working paper, University of Pennsylvania, Philadelphia.

StolyarAL, Tezcan T (2010) Control of systemswithflexiblemulti-server
pools: A shadow routing approach. Queueing Systems 66(1):1–51.

Stolyar AL, Tezcan T (2011) Shadow-routing based control of flexible
multiserver pools in overload. Oper. Res. 59(6):1427–1444.

Sutton RS (1988) Learning to predict by the methods of temporal
differences. Machine Learn 3(1):9–44.

Teow K, El-Darzi E, Foo C, Jin X, Sim J (2011) Intelligent analysis of
acute bed overflow in a tertiary hospital in Singapore. J. Medical
Systems 36(3):1873–1882.

Tezcan T, Dai JG (2010) Dynamic control of N-systems with many
servers: Asymptotic optimality of a static priority policy in heavy
traffic. Oper. Res. 58(1):94–110.

Thompson S, Nunez M, Garfinkel R, Dean MD (2009) Efficient short-
term allocation and reallocation of patients to floors of a hospital
during demand surges. Oper. Res. 57(2):261–273.

Veatch MH (2005) Approximate dynamic programming for net-
works: Fluid models and constraint reduction. Working paper,
Gordon College, Wenham, MA.

Watkins CJCH, Dayan P (1992) Technical note: Q-learning. Machine
Learn. 8(3):279–292.

Dai and Shi: Inpatient Overflow ADP
Manufacturing & Service Operations Management, 2019, vol. 21, no. 4, pp. 894–911, © 2019 INFORMS 911

http://www.todayshospitalist.com/Having-problems-finding-your
http://www.todayshospitalist.com/Having-problems-finding-your
https://doi.org/10.1287/mnsc.2018.3145
https://doi.org/10.1287/mnsc.2018.3145
https://doi.org/10.1287/msom.2018.0719
https://doi.org/10.1287/msom.2018.0719

	Inpatient Overflow: An Approximate Dynamic Programming Approach
	Introduction
	Literature Review
	Model Description
	Time-Decomposed Poisson Equation
	Simulation-Based ADP: Approximate Policy Iteration
	Basis Functions
	Numerical Results for a Five-Pool Model
	Conclusions and Future Work

