Adaptive Boosting for Image Denoising: Beyond Low-rank Representation and Sparse Coding

Zixiang Xiong

Texas A&M University http://lena.tamu.edu

Denoising: An old topic with wide apps

- Recovering x from y=x+n has been studied from several angles
 - IP, statistics, CV & ML, coding, and optimizations
- Classic Wiener filtering technique (1949) first applied to image denoising in 1980
- Wavelet theory found wide applications in image processing in the 1990s
 - Compression (with critically sampled wavelet transform)
 - Denoising via wavelet shrinkage
 - Overcomplete representation is advantageous!
- Breakthroughs
 - Non-local mean (NLM) in 2005
 - Block-matching + 3D Wiener filtering (BM3D) in 2006

NLM and BM3D denoising

built upon powerful non-local patch-based image models

To exploit non-local self-similarity

Image denoising research

Explosive growth since NLM (2005) & BM3D (2006)

Papers published on image denoising According to Google Scholar

Leading image denoising methods

Are built upon powerful patch-based image models

- NLM (2005): Self-similarity within natural images
- K-SVD (2006): Sparse representation modeling of image patches
- BM3D (2006): Combines a sparsity prior and non local self-similarity
- EPLL (2009): Expected path log likelihood
- NCSR (2011): Non-local centralized sparse representation
- SAIST (2013): Spatially adaptive iterative singular-value thresholding
- WNNM (2014): Weighted non-local nuclear mean

Leading image denoising methods

Two main components: low-rank representation & sparse coding

Signals/images are decompged into a low-rank representation

where is a fat matrix with low-rank and is sparse, meaning that it contains mostly zeros

 The computation of from (or its noisy version) is called sparse coding

Theoretical advance on low-rank matrix approx.

Nuclear norm minimization (NNM) [Candès & Recht'09]

- The nuclear norm of a matrix $\mathbf{X} \in R \uparrow m \times n$ is $\|\mathbf{X}\| \downarrow * = \sum \downarrow i / \sigma \downarrow i (\mathbf{X}) / \sigma \downarrow i (\mathbf{X})$
 - Nuclear norm is the tightest convex relaxation of the rank penalty of a matrix
- Let ¥∈Rîm×n be the given data matrix, the NNM problem aims to

 $\min \mathbf{I} \mathbf{X} \{ \| \mathbf{Y} - \mathbf{X} \| \mathbf{I} F \mathbf{1} + \lambda \| \mathbf{X} \| \mathbf{I} \mathbf{I} * \}$

where λ is a positive regularization parameter

The closed-form solution (Cai & Candès & Shen'10)

 $X \uparrow * = US \downarrow \lambda (\Sigma) V \uparrow T$

with $Y=U\Sigma V \uparrow T$ being the SVD of Y and $S \downarrow \lambda$ (Σ)=max(0, $\Sigma - \lambda/2$)

This is just soft thresholding in the SVD domain!

Theoretical advance on low-rank matrix approx.

Weighted nuclear norm minimization (WNNM) [Zhang et al'14]

- Extends NNM to allow non-uniform thresholding of $\sigma \downarrow i$ (X) to exploit a priori image info
- The weighted nuclear norm of a matrix $\boldsymbol{X} \in R \uparrow m \times n$ is $\|\boldsymbol{X}\| \downarrow \boldsymbol{w}, * = \sum \downarrow i |\omega \downarrow i \sigma \downarrow i (\boldsymbol{X})|$,

where $\mathbf{W} = [\omega \downarrow 1, \omega \downarrow 2, ..., \omega \downarrow m]$ is the weighting vector of nonnegative thresholds

• The WNNM problem aims at

 $\operatorname{argmin} \mathcal{J} X \{ \| \mathcal{V} - \mathcal{X} \| \mathcal{J} F \uparrow 2 + \lambda \| \mathcal{X} \| \mathcal{J} \mathcal{W}, * \}$

• When the weights/thresholds satisfy $0 \le \omega \downarrow 1 \le \omega \downarrow 2 \le \dots \le \omega \downarrow m$ (Zhang et al'14),

 $X \uparrow * = US \downarrow W(\Sigma) V \uparrow T \text{ and } S \downarrow W(\Sigma) = \max(0, \Sigma \downarrow ii - \omega \downarrow i)$

• Threshold $\omega \neq i$ is chosen empirically as [Vetterli et al'00]

What is next?

- With so much progress being made
 - Is denoising dead? [Chatterjee & Milanfar'10]

Chatterjee and Milanfar. Is denoising dead? IEEE Trans. Image Proc., April 2010.

What is next?

- With so much progress being made
 - Is denoising dead? [Chatterjee & Milanfar'10]
- How can we do better than WNNM (2014)?
- Beyond low-rank representation and sparse coding

 To get good image denoising results, one needs to delicately balance mathematical rigor and engineering approximations

Chatterjee and Milanfar. Is denoising dead? IEEE Trans. Image Proc., April 2010.

- Formulate denoising as a regularized optimization problem: iteratively minimizing the objective function of minimizing the MSE
- Boosting performance by adaptively feeding back the residual/ method noise image

 $\mathbf{x} = f(\mathbf{y})$

y–x

Multiple boosting algorithms have been explored in the past:

• Twicing [Tukey'77, Charest et al.'06]

•
$$\mathbf{x} \uparrow k = \mathbf{x} \uparrow k - 1 + f(\mathbf{y} - \mathbf{x} \uparrow k - 1)$$

- Diffusion [Perona-Malik'90, Coifman et al.'06, Milanfar'12]
 - Removes the noise leftovers that are found in the denoised image
 - $\mathbf{x} \uparrow k = f(\mathbf{x} \uparrow k 1)$
- Spatially adaptive iterative filtering (SAIF) [Talebi et al.'12]
 - Automatically chooses the local improvement mechanism:
 - Diffusion
 - Twicing

- SOS [Romano & Elad'15] (Strengthen-Operate-Subtract)
 - $\mathbf{x} \ \mathbf{\hat{t}} k = f(\mathbf{y} + \mathbf{x} \ \mathbf{\hat{t}} k 1) \mathbf{x} \ \mathbf{\hat{t}} k 1$

- More general : using parameter p to control signal emphasis
 - $\mathbf{x} \uparrow k = f(\mathbf{y} + \rho \mathbf{x} \uparrow k 1) \rho \mathbf{x} \uparrow k 1$

- Annealing: WNNM [Zhang et al. '14]
 - $\mathbf{x} \, \hat{\mathbf{k}} + 1 = f(\rho \mathbf{x} \, \hat{\mathbf{k}} + (1-\rho)\mathbf{y}) = f(\mathbf{x} \, \hat{\mathbf{k}} + (1-\rho)(\mathbf{y} \mathbf{x} \, \hat{\mathbf{k}}))$

- WNNM uses a constant ρ for the whole image
 - ρ =0.9 in experiments

Review of WNNM

Algorithm 1 Image denoising by WNNM **Input:** Noisy image y 1: Initialize $\hat{x}^{(0)} = y, y^{(0)} = y$ 2: for k = 1 : K do is fixed 3: $y^{(k)} = \hat{x}^{(k-1)} + (1 - \rho)(y - \hat{x}^{(k-1)})$ for each patch y_i in $y^{(k)}$ do 4: Find similar patch group Y_i 5: Estimate weight vector $[w_1, w_2, ..., w_m]^T$ 6: $[U, \Sigma, V] = SVD(Y_i)$ 7: Get the estimation: $X_i = US_w(\Sigma)V^T$ 8: 9: end for Aggregate X_i to form the clean image $\hat{x}^{(k)}$ 10: 11: end for **Output:** Clean image $\hat{x}^{(K)}$

Basic idea of adaptive boosting (AB)

- Instead of using a fixed feedback/boosting factor $1-\rho$, we adaptively change it from one iteration to another
- This is very intuitive
 - As the denoising performance improves from iteration to iteration, there is less and less useful structure in the method/ residual noise
 - The feedback factor $1-\rho$ should decrease from one iteration to another
- How to do adaptive boosting systematically?
 - Rank-1 based fixed-point analysis

Fixed-point analysis

- Setup: y=x+n
 - $\mathbf{y} \in R \uparrow m \times 1$, noisy image patch arranged in an vector
 - $\mathbf{x} \in R \uparrow m \times 1$, clean image patch; $\mathbf{n} \in R \uparrow m \times 1$, AWGN noise $\mathbf{n} \sim N(0, \sigma \uparrow 2)$
- A generic iterative patch-based denoising algorithm

$$\mathbf{x} \ \mathbf{\hat{k}} = f(\mathbf{x} \ \mathbf{\hat{k}} - 1 + (1 - \rho \mathbf{\hat{k}})(\mathbf{y} - \mathbf{x} \ \mathbf{\hat{k}} - 1))$$
$$= f(\rho \mathbf{\hat{k}} \mathbf{x} \ \mathbf{\hat{k}} - 1 + (1 - \rho \mathbf{\hat{k}})\mathbf{y}) \qquad \mathbf{k} \in \mathbb{Z}\mathbf{\hat{l}} + \mathbb{Z}\mathbf{\hat{k}} + \mathbb{Z}$$

- \succ $f(\cdot)$ is nonlinear in general, but most existing algorithms can be represented as row-stochastic positive definite matrix operations W [Milanfar '13]
- > Assuming convergence, assign **x** $\hbar k = \mathbf{x} \hbar k 1 = \mathbf{x} \hbar k$

$$\mathbf{x} \, \mathbf{\hat{t}} = \mathcal{W}(\rho \, \mathbf{\hat{t}} * \mathbf{x} \, \mathbf{\hat{t}} + (1 - \rho \, \mathbf{\hat{t}} * \,) \mathbf{y})$$

Fixed-point analysis

Fixed Point: $\mathbf{x} \uparrow = (I - \rho \uparrow W) \uparrow -1 (1 - \rho \uparrow W) \mathcal{W} \mathbf{y}$

• Minimize the mean square error of estimator $\mathbf{x} \uparrow *$:

$$MSE(\mathbf{x} \uparrow *) = E[(\mathbf{x} \uparrow * -\mathbf{x})\uparrow 2]$$

= $\|bias(\mathbf{x} \uparrow *)\|\uparrow 2 + var(\mathbf{x} \uparrow *)$

Bias:

$$bias(\mathbf{x} \ \mathbf{\hat{t}} *) = E(\mathbf{x} \ \mathbf{\hat{t}} *) - \mathbf{x}$$

= [(I-\rho \mathcal{t} * W)\mathcal{t} - 1 (1-\rho \mathcal{t} *)W-I]\mathbf{x}
= (I-\rho \mathcal{t} * W)\mathcal{t} - 1 (W-I)\mathbf{x}

• Row-stochastic positive definite matrix admits an eigendecomposition: $W = U\Lambda U \uparrow T$; the clean patch $\mathbf{x} = U\mathbf{b}$ $\|bias\|/\mathbf{12} = \|U(I - \rho \uparrow * \Lambda) \uparrow -\mathbf{1} (\Lambda - I)\mathbf{b}\|/\mathbf{12}$ $= \|(I - \rho \uparrow * \Lambda) \uparrow -\mathbf{1} (\Lambda - I)\mathbf{b}\| (\Lambda = diag[\lambda \downarrow 1, \cdots, \Delta \downarrow i])$ $= \sum_{i=1}^{\infty} (\lambda \downarrow i - 1) \uparrow 2 \ b \downarrow i \uparrow 2 \ (1 - \rho \uparrow * \lambda \downarrow i) \uparrow 2 \ \lambda \downarrow m])$

Fixed-point analysis

Fixed Point: $\mathbf{x} \uparrow = (I - \rho \uparrow W) \uparrow -1 (1 - \rho \uparrow W) \mathbf{y}$

Variance:

$$\begin{aligned} var(\mathbf{x} \ \mathbf{\hat{1}}^*) = tr[cov(\mathbf{x} \ \mathbf{\hat{1}}^*)] \\ = tr[cov((I-\rho\mathbf{\hat{1}}^* W)\mathbf{\hat{1}}-1 \ (1-\rho\mathbf{\hat{1}}^*)Wn)] \\ = \sigma\mathbf{\hat{1}} \sum_{i=1}^{i=1} m (1-\rho\mathbf{\hat{1}}^*)\mathbf{\hat{1}} \lambda \mathbf{\hat{1}} \mathbf{\hat{1}} \sum_{i=1}^{i=1} m (1-\rho\mathbf{\hat{1}}^*)\mathbf{\hat{1}} \lambda \mathbf{\hat{1}} \mathbf{\hat{1}} \sum_{i=1}^{i=1} \mathbf{\hat{1}} m (1-\rho\mathbf{\hat{1}}^*)\mathbf{\hat{1}} \sum_{i=1}^{i=1} \mathbf{\hat{1}} \mathbf{\hat{1}} \sum_{i=1}^{i=1} \mathbf{\hat{1}} \sum_{i=1}^{i=1} \mathbf{\hat{1}} \mathbf{\hat{1}} \sum$$

• Overall MSE: $MSE = \sum_{i=1}^{n} 17m \lambda_{i}i12 (1-\rho^{*})12 \sigma^{2} + (\lambda_{i}i-1)12 b_{i}i12 / (1-\rho^{*}\lambda_{i})$

- noise variance $\rightarrow \sigma 12$
- patch property $\rightarrow b \downarrow i \uparrow 2$
- denoising algorithm $\rightarrow \Lambda$, $\lambda \downarrow i \uparrow 2$
- try to find the optimal $\rho \uparrow *$ to minimize the MSE
- Specialize the denoising matrix W to SVD-based soft thresholding and look for the optimal ρ1*

SVD-based soft thresholding in WNNM

• Group-level setup: stack $m \downarrow 1$ similar blocks together

Rank-1 based fixed-point analysis

 $\vec{x} = \sum_{i=1}^{\infty} \frac{1}{m} \frac{1}{n} \frac$

Rank-1 Assumption: All nonlocal blocks similar to x in the original image are identical! *Y* is a rank-1 matrix plus Gaussian noise

Х

V

Rank-1 based fixed-point analysis

- Rank-1 Assumption: All nonlocal blocks similar to x in the original image are identical! Y is a rank-1 matrix plus Gaussian noise
 - The first singular value in Σ dominates the rest: $s \downarrow 1 \gg s \downarrow i$, for i=2,

Shabalin and Nobel. *Reconstruction of a low-rank matrix in the presence of Gaussian noise*. Journal of Multivariate Analysis, 2013.

Nadakuditi. *Optshrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage*. IEEE Trans. Info. Theory, May 2014.

Rank-1 based fixed-point analysis

• Since $s \downarrow 1 \gg s \downarrow i$, for $i=2, \dots, m$, we have $s \downarrow i \leq \omega \downarrow i$ $\lambda \downarrow i = \max(1-\omega \downarrow i / s \downarrow i , 0)$ for $i=1, \dots, m \rightarrow \lambda \downarrow i = 0$, for i=2,

 $= \lambda i 12 (1 - \rho^{*}) 12 \sigma^{12}_{2} + (\lambda i (1 - \rho^{*})) 2 \sigma^{12}_$

• The optimal $\rho \uparrow *$ that minimize the MSE is

 $\rho \uparrow * = \lambda \downarrow 1 \ \sigma \uparrow 2 - (1 - \lambda \downarrow 1) b \downarrow 1 \uparrow 2 /$

 $\lambda \downarrow 1 \sigma 12$

Adaptive boosting (AB)

- Given the formula of optimal $\rho \hat{l} *$ from fixed point analysis $\rho \hat{l} * = \lambda i \sigma \hat{l} 2 - (1 - \lambda i 1) b i 1 \hat{l} 2 / \lambda i 1 \sigma \hat{l} 2$, estimate $\lambda i 1 = \sqrt{E i \mathbf{x}} / E i \mathbf{y}$, $b i 1 \hat{l} 2 = E i \mathbf{x}$, we have $\rho \hat{l} * = \sqrt{E i \mathbf{y}} / \sqrt{E i \mathbf{y}} + \sqrt{E i \mathbf{x}}$
- The $b \downarrow 1 \uparrow 2$ stands for the energy strength in patch $\mathbf{x} \rightarrow \text{patches}$ with different characteristics should be assigned different $\rho \uparrow *$ s.
- $\rho \uparrow * \in (0.5, 1)$ which satisfies the convergence condition
- We use the same formula for *p1k* in the *k*-th iteration of AB, the adaptive boosting becomes

 $\rho \uparrow k = \sqrt{E \downarrow \mathbf{x}} \uparrow k - 1 \quad /\sqrt{E \downarrow \mathbf{x}} \uparrow k - 1 \quad +\sqrt{\max(E \downarrow \mathbf{x}} \uparrow k - 1 \quad -\sigma \uparrow 2, 0)$

• The feedback factor $1-\rho \hbar k$ decreases as k increases \checkmark

Adaptive boosting

Algorithm 2 AB for image denoising

Input: Noisy image y 1: Initialize $\hat{x}^{(0)} = y, y^{(0)} = y$ 2: for k = 1 : K do $\rho \hat{k} = \sqrt{E l \mathbf{x}} \hat{k} - 1 \quad /\sqrt{E l \mathbf{x}} \hat{k} \\ -1 \quad +\sqrt{\max(E l \mathbf{x})} \hat{k} - 1 \quad$ for each patch y_i in $y^{(k)}$ do 3: Calculate $\rho_i^{(k)}$ 4: $\mathbf{y}_{j}^{(k)} = \hat{\mathbf{x}}_{j}^{(k-1)} + (1 - \rho_{j}^{(k)})(\mathbf{y}_{j} - \hat{\mathbf{x}}_{j}^{(k-1)}) \qquad \sigma 12,0)$ 5: end for 6: for each patch \mathbf{y}_i in $y^{(k)}$ do 7: Find similar patch group Y_i 8: Estimate weight vector w9: $[U, \Sigma, V] = SVD(Y_i)$ 10: Get the estimation: $\hat{X}_i = US_w(\Sigma)V^T$ 11: end for 12: Aggregate \hat{X}_i to form the clean image $\hat{x}^{(k)}$ 13: 14: end for **Output:** Clean image $\hat{x}^{(K)}$

Assuming matrix approximation of $f(\cdot) \approx W$

Difference between the k-th estimate and the fixed point

$$= \mathcal{W}(\rho \uparrow k \mathbf{x} \uparrow k - 1 + (1 - \rho \uparrow k) \mathbf{y}) - \mathcal{W}(\rho \uparrow * \mathbf{x} \uparrow * + (1 - \rho \uparrow *) \mathbf{y})$$

• After a large number of iterations, replace $\rho \uparrow k$ by $\rho \uparrow *$

$$e^{\uparrow}k = \rho^{\uparrow}* W(\mathbf{x} \uparrow k - 1 - \mathbf{x} \uparrow *) = \rho^{\uparrow}* We^{\uparrow}k - 1 = \rho^{\uparrow}* \uparrow k W^{\uparrow}k$$
$$e^{\uparrow}0$$

• We have $0 < \rho \hat{\tau} < 1$ and $0 \le W < 1$ (the denoising operator is contractive)

•
$$e^{\uparrow}k \rightarrow 0$$
 as $k \rightarrow \infty$

Test images

The 20 test images commonly used in experiments:

Numerical results

AB gives the **best** PSNR result for every images (20 test images) and the improvement over others **increases** with noise variance

	$\sigma_n = 10$								$\sigma_n = 30$					
	BM3D	EPLL	LSSC	NCSR	SAIST	WNNM	AB	BM3D	EPLL	LSSC	NCSR	SAIST	WNNM	AB
C.Man	34.18	34.02	34.24	34.18	34.30	34.44	34.49	28.64	28.36	28.63	28.59	28.36	28.80	28.96
House	36.71	35.75	36.95	36.80	36.66	36.95	37.03	32.09	31.23	32.41	32.07	32.30	32.52	32.68
Peppers	34.68	34.54	34.80	34.68	34.82	34.95	34.97	29.28	29.16	29.25	29.10	29.24	29.49	29.66
Montage	37.35	36.49	37.26	37.17	37.46	37.84	37.91	31.38	30.17	31.10	30.92	31.06	31.65	31.83
Leaves	34.04	33.29	34.52	34.53	34.92	35.20	35.29	27.81	27.18	27.65	28.14	28.29	28.60	28.71
StarFish	33.30	33.29	33.74	33.65	33.72	33.99	34.04	27.65	27.52	27.70	27.78	27.92	28.08	28.16
Monarch	34.12	34.27	34.44	34.51	34.76	35.03	35.07	28.36	28.35	28.20	28.46	28.65	28.92	29.01
Airplane	33.33	33.39	33.51	33.40	33.43	33.64	33.67	27.56	27.67	27.53	27.53	27.66	27.83	27.95
Paint	34.00	34.01	34.35	34.15	34.28	34.50	34.53	28.29	28.33	28.29	28.10	28.44	28.58	28.71
J.Bean	37.91	37.63	38.69	38.31	38.37	38.93	39.04	31.97	31.56	32.39	32.13	32.14	32.46	32.67
Fence	33.50	32.89	33.60	33.65	33.76	33.93	33.96	28.19	27.23	28.16	28.23	28.26	28.56	28.66
Parrot	33.57	33.58	33.62	33.56	33.66	33.81	33.85	28.12	28.07	27.99	28.07	28.12	28.33	28.40
Lena	35.93	35.58	35.83	35.85	35.90	36.03	36.08	31.26	30.79	31.18	31.06	31.27	31.43	31.54
Barbara	34.98	33.61	34.98	35.00	35.24	35.51	35.55	29.81	27.57	29.60	29.62	30.14	30.31	30.41
Boat	33.92	33.66	34.01	33.91	33.91	34.09	34.12	29.12	28.89	29.06	28.94	28.98	29.24	29.36
Hill	33.62	33.48	33.66	33.69	33.65	33.79	33.85	29.16	28.90	29.09	28.97	29.06	29.25	29.36
F.print	32.46	32.12	32.57	32.68	32.69	32.82	32.84	26.83	26.19	26.68	26.92	26.95	26.99	27.13
Man	33.98	33.97	34.10	34.05	34.12	34.23	34.28	28.86	28.83	28.87	28.78	28.81	29.00	29.14
Couple	34.04	33.85	34.01	34.00	33.96	34.14	34.18	28.87	28.62	28.77	28.57	28.72	28.98	29.07
Straw	30.89	30.74	31.25	31.35	31.49	31.62	31.63	24.84	24.64	24.99	25.00	25.23	25.27	25.35
AVE.	34.33	34.01	34.51	34.46	34.56	34.77	34.82	28.91	28.46	28.88	28.85	28.98	29.21	29.34

Numerical results

AB gives the **best** PSNR result for every images (20 test images) and the improvement over others **increases** with noise variance

	$\sigma_n = 50$							$\sigma_n = 100$						
C.Man	26.12	26.02	26.35	26.14	26.15	26.42	26.64	23.07	22.86	23.15	22.93	23.09	23.36	23.75
House	29.69	28.76	29.99	29.62	30.17	30.32	30.62	25.87	25.19	25.71	25.56	26.53	26.68	27.35
Peppers	26.68	26.63	26.79	26.82	26.73	26.91	27.11	23.39	23.08	23.20	22.84	23.32	23.46	23.85
Montage	27.90	27.17	28.10	27.84	28.00	28.27	28.54	23.89	23.42	23.77	23.74	23.98	24.16	24.60
Leaves	24.68	24.38	24.81	25.04	25.25	25.47	25.65	20.91	20.25	20.58	20.86	21.40	21.57	21.80
StarFish	25.04	25.04	25.12	25.07	25.29	25.44	25.59	22.10	21.92	21.77	21.91	22.10	22.22	22.50
Monarch	25.82	25.78	25.88	25.73	26.10	26.32	26.48	22.52	22.23	22.24	22.11	22.61	22.95	23.21
Airplane	25.10	25.24	25.25	24.93	25.34	25.43	25.61	22.11	22.02	21.69	21.83	22.27	22.55	22.91
Paint	25.67	25.77	25.59	25.37	25.77	25.98	26.19	22.51	22.50	22.14	22.11	22.42	22.74	23.10
J.Bean	29.26	28.75	29.42	29.29	29.32	29.62	29.79	25.80	25.17	25.64	25.66	25.82	26.04	26.31
Fence	25.92	24.58	25.87	25.78	26.00	26.43	26.56	22.92	21.11	22.71	22.23	22.98	23.37	23.69
Parrot	25.90	25.84	25.82	25.71	25.95	26.09	26.17	22.96	22.71	22.79	22.53	23.04	23.19	23.38
Lena	29.05	28.42	28.95	28.90	29.01	29.24	29.40	25.95	25.30	25.96	25.71	25.93	26.20	26.52
Barbara	27.23	24.82	27.03	26.99	27.51	27.79	27.96	23.62	22.14	23.54	23.20	24.07	24.37	24.68
Boat	26.78	26.65	26.77	26.66	26.63	26.97	27.15	23.97	23.71	23.87	23.68	23.80	24.10	24.36
Hill	27.19	26.96	27.14	26.99	27.04	27.34	27.52	24.58	24.43	24.47	24.36	24.29	24.75	25.11
F.print	24.53	23.59	24.26	24.48	24.52	24.67	24.81	21.61	19.85	21.30	21.39	21.62	21.81	21.96
Man	26.81	26.72	26.72	26.67	26.68	26.94	27.14	24.22	24.07	23.98	24.02	24.01	24.36	24.65
Couple	26.46	26.24	26.35	26.19	26.30	26.65	26.85	23.51	23.32	23.27	23.15	23.21	23.55	23.86
Straw	22.29	21.93	22.51	22.30	22.65	22.74	22.86	19.43	18.84	19.43	19.10	19.42	19.67	19.98
AVE.	26.41	25.97	26.44	26.33	26.52	26.75	26.93	23.25	22.71	23.06	23.00	23.30	23.56	23.88

Visual comparison

(e) NCSR

(h) AB

Comparison with lower bound

AB performs closest to the Cramer-Rao lower bound

Chatterjee and Milanfar. Is denoising dead? IEEE Trans. Image Proc., April 2010.

Remarks

- AB works as a preprocessing step in each iteration before the image is denoised by leading method
- Complexity of AB is ignorable compared with the main denoising algorithm
- AB is block-based to adapt to non-stationarity
- The idea of AB is very generic
 - Can be combined with training/learning-based approach
- AB is applicable to other representative methods
 - Such as BM3D and K-SVD

Remarks

- AB is applicable to other representative methods
 - Fresh PSNR results (in dB) from BM3D+AB

Sigma = 25	BM3D	BM3D+SOS	BM3D+AB
Foreman	33.41	33.48	33.49
Lena	32.02	32.04	32.05
House	32.90	32.90	32.93
FingerPrint	27.72	27.72	27.74
Peppers	31.87	31.89	31.90

Image denoising -- for real!

Images taken by low- and high-end smart phones

4160x3120

3264x2448

Image denoising -- for real!

Images taken by low- and high-end smart phones

1259x771 window

1031x754 window

Image deblurring

Could be part of denoising

Image super-resolution

Face super-resolution for recognition

Image inpainting

