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		Denoising:	An	old	topic	with	wide	apps		
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§  Recovering	𝐱	from	𝒚=𝐱+𝐧 has	been	studied	from	several	angles		
§  IP,	sta6s6cs,	CV	&	ML,	coding,	and	op6miza6ons	

§  Classic	Wiener	filtering	technique	(1949)	first	applied	to	image	
denoising	in	1980			

§  Wavelet	theory	found	wide	applica6ons	in	image	processing	in	the	
1990s	

§  Compression	(with	cri6cally	sampled	wavelet	transform)	
§  Denoising	via	wavelet	shrinkage		

§  Overcomplete	representa6on	is	advantageous!	
§  Breakthroughs		
§  Non-local	mean	(NLM)	in	2005	
§  Block-matching	+	3D	Wiener	filtering	(BM3D)	in	2006	

	



			NLM	and	BM3D	denoising		

built	upon	powerful	non-local	patch-based	image	models	
§  To	exploit	non-local	self-similarity	



			Image	denoising	research		
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§  Explosive	growth	since	NLM	(2005)	&	BM3D	(2006)		
Papers published on image denoising 

According to Google Scholar 



			Leading	image	denoising	methods		
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Are	built	upon	powerful	patch-based	image	models	
	
§  NLM	(2005):	Self-similarity	within	natural	images	
§  K-SVD	(2006):	Sparse	representa6on	modeling	of	image	patches	
§  BM3D	(2006):	Combines	a	sparsity	prior	and	non	local	self-similarity	
§  EPLL	(2009):	Expected	path	log	likelihood	
§  NCSR	(2011):	Non-local	centralized	sparse	representa6on	
§  SAIST	(2013):	Spa6ally	adap6ve	itera6ve	singular-value	
thresholding	

§  WNNM	(2014):	Weighted	non-local	nuclear	mean	
§  …		



			Leading	image	denoising	methods		

					where	𝐃	is	a	fat	matrix	with	low-rank	and	 ​𝛼 	is	sparse,	meaning					is	a	fat	matrix	with	low-rank	and	 ​𝛼 	is	sparse,	meaning				
					that	it	contains	mostly	zeros	

§  The	computa6on	of	 ​𝛼 	from	 ​x  	(or	its	noisy	version)	is	called	
sparse	coding	
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Two	main	components:	low-rank	representa6on	&	sparse	
coding	

§  Signals/images	are	decomposed	into	a	low-rank	representa6on		

	
​x =𝐃 ​𝛼  

D	

…

D	=	x	 ​𝛼  



Theore%cal	advance	on	low-rank	matrix	approx.	
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Nuclear	norm	minimiza6on	(NNM)	[Candès	&	Recht’09]		
§  The	nuclear	norm	of	a	matrix	𝑿∊​𝑅↑𝑚×𝑛 	is	ǁ ​𝑿ǁ↓∗ ​=∑↓𝑖 |​σ↓𝑖 (𝑿)|	
§  Nuclear	norm	is	the	6ghtest	convex	relaxa6on	of	the	rank	penalty	

of	a	matrix	
§  Let	𝒀∊​𝑅↑𝑚×𝑛  be	the	given	data	matrix,		the	NNM	problem	aims	

to	
​min↓𝑿 { ​ǁ𝒀−𝑿ǁ↓𝐹↑2 	+ λ ǁ ​𝑿ǁ↓∗ } 

      where	λ	is	a	posi6ve	regulariza6on	parameter	
§  The	closed-form	solu6on	(Cai	&	Candès	&	Shen’10)	

​𝑿↑∗ =U ​𝑺↓λ (Σ) ​𝑽↑𝑇  
      with	𝒀=UΣ ​𝑽↑𝑇 	being	the	SVD	of	𝒀	and ​ 𝑺↓λ (Σ)=max(0, Σ-λ/2) 	
§  This	is	just	soi	thresholding	in	the	SVD	domain!	

		



Theore%cal	advance	on	low-rank	matrix	approx.	

8 

Weighted	nuclear	norm	minimiza6on	(WNNM)	[Zhang	et	al’14]	
§  Extends	NNM	to	allow	non-uniform	thresholding	of	​σ↓𝑖 (𝑿)	to	exploit	a	priori	

image	info		

§  The	weighted	nuclear	norm	of	a	matrix	𝑿∊​𝑅↑𝑚×𝑛 	is		ǁ ​𝑿ǁ↓𝒘,∗ ​=∑↓𝑖 |​​𝜔↓𝑖 
σ↓𝑖 (𝑿)|,	

			where	𝒘=[ ​𝜔↓1 , ​𝜔↓2 ,…, ​𝜔↓𝑚 ]	is	the	weigh6ng	vector	of	nonnega6ve	
thresholds	

§  The	WNNM	problem	aims	at	

			 ​argmin↓𝑿 { ​ǁ𝒀−𝑿ǁ↓𝐹↑2 	+	λ ǁ ​𝑿ǁ↓𝒘,∗ }	
§  When	the	weights/thresholds	sa6sfy	0	≤	​𝜔↓1 ≤ ​𝜔↓2 ≤	···	≤ ​𝜔↓𝑚  (Zhang et 

al’14),	
​𝑿↑∗ =U​𝑺↓𝑾 (Σ)​𝑽↑𝑇 					and ​      𝑺↓𝑾 (Σ)=max(0,	 ​Σ↓𝑖𝑖 - ​𝜔↓𝑖 ) 		

§  Threshold	 ​𝜔↓𝑖 	is	chosen	empirically	as	[Venerli	et	al’00]	

​𝜔↓𝑖 =𝑐/[ ​σ↓𝑖 (𝑿)+ε],	
						with	​σ↓𝑖 (𝑿) es6mated	from	 ​​Σ↓𝑖𝑖 =σ↓𝑖 (𝒀)	



			What	is	next?		
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§  With	so	much	progress	being	made	

§  Is	denoising	dead?	[Chanerjee	&	Milanfar’10]	
		

Chatterjee and Milanfar. Is denoising dead? IEEE Trans. Image Proc., April 2010. 

Papers published on image denoising 
According to Google Scholar 



			What	is	next?		
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§  With	so	much	progress	being	made	

§  Is	denoising	dead?	[Chanerjee	&	Milanfar’10]	
		

Sparse		
coding 

Low-rank		
representa6on 

Adap6ve	
boos6ng	

§  How	can	we	do	beKer	than	WNNM	(2014)?	

§  Beyond	low-rank	representa%on	and	sparse	coding		

§  To	get	good	image	denoising	results,	one	needs	to	delicately	
balance	mathema%cal	rigor	and	engineering	approxima%ons	

Chatterjee and Milanfar. Is denoising dead? IEEE Trans. Image Proc., April 2010. 



				Boos%ng	
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Noisy	image	
𝐲

Denoised	image	
​𝐱 =𝑓(𝐲)

Method	noise	
𝐲− ​𝐱 

§  Formulate	denoising	as	a	regularized	op6miza6on	problem:	
itera6vely	minimizing	the	objec6ve	func6on	of	minimizing	the	MSE	

§  Boos6ng	performance	by	adap6vely	feeding	back	the	residual/
method	noise	image	



				Boos%ng	
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Mul6ple	boos6ng	algorithms	have	been	explored	in	the	past:	

§  Twicing	[Tukey’77,	Charest	et	al.’06]	

§   ​​𝐱 ↑𝑘 = ​​𝐱 ↑𝑘−1 +𝑓(𝐲− ​​𝐱 ↑𝑘−1 ) 

§  Diffusion	[Perona-Malik’90,	Coifman	et	al.’06,	Milanfar’12]	

§  Removes	the	noise	leiovers	that	are	found	in	the	denoised	
image	

§   ​​𝐱 ↑𝑘 =𝑓(​​𝐱 ↑𝑘−1 )	

§  Spa6ally	adap6ve	itera6ve	filtering	(SAIF)	[Talebi	et	al.’12]	
§  Automa6cally	chooses	the	local	improvement	mechanism:	

§  Diffusion	
§  Twicing	



				Boos%ng	
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§  SOS	[Romano	&	Elad’15]	(Strengthen-Operate-Subtract)	

§   ​​𝐱 ↑𝑘 =𝑓(𝐲+ ​​𝐱 ↑𝑘−1 )− ​​𝐱 ↑𝑘−1  

Denoise	

Previous	
Result	

§  More	general	:	using	parameter	𝜌	to	control	signal	emphasis			to	control	signal	emphasis		

§   ​​𝐱 ↑𝑘 =𝑓(𝐲+𝜌​​𝐱 ↑𝑘−1 )− ​𝜌​𝐱 ↑𝑘−1  



				Boos%ng		
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§  Annealing:	WNNM	[Zhang	et	al.	’14]		

§   ​​𝐱 ↑𝑘+1 =𝑓(𝜌​​𝐱 ↑𝑘 +(1−𝜌)𝐲)=𝑓( ​​𝐱 ↑𝑘 +(1−𝜌)(𝐲− ​​𝐱 ↑𝑘 )) 

Denoise	

Previous	
Result	

§  WNNM	uses	a	constant 𝜌	for	the	whole	image			for	the	whole	image		

§  𝜌 =0.9	in	experiments	



		Review	of	WNNM	
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fixed 



		Basic	idea	of	adap%ve	boos%ng	(AB)	

16 

•  Instead	of	using	a	fixed	feedback/boos6ng	factor	1−𝜌,	,	
we	adap6vely	change	it	from	one	itera6on	to	another	

•  This	is	very	intui6ve		
•  As	the	denoising	performance	improves	

from	itera6on	to	itera6on,	there	is	less	
and	less	useful	structure	in	the	method/
residual	noise		

•  The	feedback	factor 1−𝜌 should	
decrease	from	one	itera6on	to	another	

						•  How	to	do	adap6ve	boos6ng	
systema6cally?	
•  Rank-1	based	fixed-point	analysis	



	Fixed-point	analysis	
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§  Setup:		𝐲=𝐱+𝐧	

§  𝐲 ∈ ​𝑅↑𝑚×1 , noisy image patch arranged in an vector	

§  𝐱 ∈ ​𝑅↑𝑚×1 , clean image patch;𝐧∈ ​𝑅↑𝑚×1 , AWGN noise 𝐧~𝑁(0, ​
𝜎↑2 )	

§  A	generic	itera6ve	patch-based	denoising	algorithm		

​​𝐱 ↑𝑘 =𝑓(​​𝐱 ↑𝑘−1 +(1− ​𝜌↑𝑘 )(𝐲− ​​𝐱 ↑𝑘−1 ))


      =𝑓(​𝜌↑𝑘 ​​𝐱 ↑𝑘−1 +(1− ​𝜌↑𝑘 )𝐲)       𝑘∈ ​𝑍↑+  

Ø  𝑓(∙)	is	nonlinear	in	general,	but	most	exis6ng	algorithms	can	be	represented	as	(∙)	is	nonlinear	in	general,	but	most	exis6ng	algorithms	can	be	represented	as	
row-stochas6c	posi6ve	definite	matrix	opera6ons	𝑊	[Milanfar	’13]		[Milanfar	’13]	

Ø  Assuming	convergence,	assign	​​𝐱 ↑𝑘 = ​​𝐱 ↑𝑘−1 = ​​𝐱 ↑∗ 	

​​𝐱 ↑∗ =𝑊(​𝜌↑∗ ​​𝐱 ↑∗ +(1− ​𝜌↑∗ )𝐲)	

§  The	fixed-point	solu6on:				​​𝐱 ↑∗ = ​(𝐼− ​𝜌↑∗ 𝑊)↑−1 (1− ​𝜌↑∗ )𝑊𝐲		

	



	Fixed-point	analysis	

18 

Fixed	Point:			​​𝐱 ↑∗ = ​(𝐼− ​𝜌↑∗ 𝑊)↑−1 (1− ​𝜌↑∗ )𝑊𝐲	
§  Minimize	the	mean	square	error	of	es6mator	​​𝐱 ↑∗ :	

	𝑀𝑆𝐸(​​𝐱 ↑∗ )=𝐸[​(​​𝐱 ↑∗ −𝐱)↑2 ]

                             = ​‖𝑏𝑖𝑎𝑠( ​​𝐱 ↑∗ )‖↑2 +var(​​𝐱 ↑∗ )	
§  Bias:	
                 𝑏𝑖𝑎𝑠(​​𝐱 ↑∗ )=𝐸(​​𝐱 ↑∗ )−𝐱	
                                    =[​(𝐼− ​𝜌↑∗ 𝑊 )↑−1 (1− ​𝜌↑∗ )𝑊−𝐼]𝐱 
                                    = ​(𝐼− ​𝜌↑∗ 𝑊 )↑−1 (𝑊−𝐼)𝐱 

•  Row-stochas6c	posi6ve	definite	matrix	admits	an	eigen-
decomposi6on:	𝑊=𝑈Λ ​𝑈↑𝑇 ;	the	clean	patch	𝐱=𝑈𝐛


​‖𝑏𝑖𝑎𝑠‖↑𝟐 = ​‖𝑈​(𝐼− ​𝜌↑∗ Λ)↑−𝟏 (Λ−𝐼)𝐛‖↑𝟐  
         = ​‖​(𝐼− ​𝜌↑∗ Λ)↑−𝟏 (Λ−𝐼)𝐛‖↑𝟐  
  

 
 

=∑𝑖=1↑𝑚▒​​(​𝜆↓𝑖 −1)↑2 ​𝑏↓𝑖↑2 /​(1− ​𝜌↑∗ ​𝜆↓𝑖 )↑2    
(Λ=𝑑𝑖𝑎𝑔[​λ↓1 ,⋯, ​

λ↓𝑚 ]) 



	Fixed-point	analysis	
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Fixed	Point:			​​𝐱 ↑∗ = ​(𝐼− ​𝜌↑∗ 𝑊)↑−1 (1− ​𝜌↑∗ )𝑊𝐲	
§  Variance:	
                   𝑣𝑎𝑟(​​𝐱 ↑∗ ) =𝑡𝑟[𝑐𝑜𝑣(​​𝐱 ↑∗ )] 
                                =𝑡𝑟[𝑐𝑜𝑣( ​(𝐼− ​𝜌↑∗ 𝑊 )↑−1 (1− ​𝜌↑∗ )𝑊n)]	

= ​𝜎↑2 ∑𝑖=1↑𝑚▒​​(1− ​𝜌↑∗ )↑2 ​𝜆↓𝑖↑2 /​(1− ​𝜌↑∗ ​𝜆↓𝑖 )↑2    

§  Overall	MSE:	

	
§  noise	variance	à ​𝜎↑2 	
§  patch	propertyà	 ​𝑏↓𝑖↑2 	
§  denoising	algorithm	à	 ​Λ, 𝜆↓𝑖↑2 	
§  try	to	find	the	op6mal	​𝜌↑∗ 	to	minimize	the	MSE	

§  Specialize	the	denoising	matrix	W 	to	SVD-based	soi	
thresholding	and	look	for	the	op6mal	 ​𝜌↑∗ 	

𝑀𝑆𝐸=∑𝑖=1↑𝑚▒​​​𝜆↓𝑖↑2 (1− ​𝜌↑∗ )↑2 ​𝜎↑2 + ​(​𝜆↓𝑖 −1)↑2 ​𝑏↓𝑖↑2 /​(1− ​𝜌↑∗ ​𝜆↓𝑖 )↑2    



			SVD-based	soV	thresholding	in	WNNM	
§  Group-level	setup:	stack	​𝑚↓1 similar	blocks	together	

																				𝑌=𝑋+𝑁									𝑌, 𝑋, 𝑁∊​𝑅↑𝑚× ​𝑚↓1  												
𝑌= 𝑈Σ​𝑉↑𝑇  Denoiser W ​𝑋 =𝑈​𝑆↓𝜔 (Σ) ​𝑉↑𝑇  

 Λ= ​𝑆↓𝜔 (Σ) ​Σ↑
−1  

 

​𝑋 =𝑈​𝑆↓𝜔 (Σ)​Σ↑−1 ​
𝑈↑𝑇 𝑈Σ​𝑉↑𝑇  

​𝑋 =𝑈​𝑆↓𝜔 (Σ)​Σ↑−1 ​
𝑈↑𝑇 𝑌  

Σ=𝑑𝑖𝑎𝑔[​𝑠↓1 ,⋯, ​𝑠↓𝑚 ] 
​S↓𝜔 (Σ)=𝑑𝑖𝑎𝑔[​max ⁠(​𝑠↓1 − ​𝜔↓1 ,0) ,⋯, ​max ⁠(​𝑠↓𝑚 − ​𝜔↓𝑚 ,0) ] 

​𝜆↓𝑖 = ​max ⁠(1− ​​𝜔↓𝑖 /​𝑠↓𝑖  ,0)    for	𝑖=1,⋯,𝑚	
 

𝑊=𝑈Λ ​𝑈↑𝑇 	 

​𝑋 =𝑊𝑌 

​𝑋 =𝑈Λ ​𝑈↑𝑇 𝑌 



			Rank-1	based	fixed-point	analysis	
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§  Rank-1	Assump6on:	All	nonlocal	blocks	similar	to	𝐱	in	the	original	

image	are	iden6cal!	𝑌 is	a	rank-1	matrix	plus	Gaussian	noise	

	
	
	

𝐱 𝐲 

𝑀𝑆𝐸=∑𝑖=1↑𝑚▒​​​𝜆↓𝑖↑2 (1− ​𝜌↑∗ )↑2 ​𝜎↑2 + ​(​𝜆↓𝑖 −1)↑2 ​𝑏↓𝑖↑2 /​(1− ​𝜌↑∗ ​𝜆↓𝑖 )↑2    



			Rank-1	based	fixed-point	analysis	
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§  Rank-1	Assump6on:	All	nonlocal	blocks	similar	to	𝐱	in	the	original	
image	are	iden6cal!	𝑌 is	a	rank-1	matrix	plus	Gaussian	noise	
§  The	first	singular	value	in Σ	dominates	the	rest:	​𝑠↓1 ≫​𝑠↓𝑖 ,	for	𝑖=2,

⋯,𝑚	
	
	
	

Shabalin and Nobel. Reconstruction of a low-rank matrix in the presence of Gaussian 
noise. Journal of Multivariate Analysis, 2013. 
Nadakuditi. Optshrink: An algorithm for improved low-rank signal matrix denoising by 
optimal, data-driven singular value shrinkage. IEEE Trans. Info. Theory, May 2014. 
 



			Rank-1	based	fixed-point	analysis	
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§  Since	 ​𝑠↓1 ≫​𝑠↓𝑖 ,	for	𝑖=2,⋯,𝑚, we	have	​𝑠↓𝑖  ≤ ​𝜔↓𝑖 		
						​𝜆↓𝑖 = ​max ⁠(1− ​​𝜔↓𝑖 /​𝑠↓𝑖  ,0)    for	𝑖=1,⋯,𝑚    à ​𝜆↓𝑖 =0,  for	𝑖=2,
⋯,𝑚		

𝑀𝑆𝐸=∑𝑖=1↑𝑚▒​​​𝜆↓𝑖↑2 (1− ​𝜌↑∗ )↑2 ​𝜎↑2 + ​(​𝜆↓𝑖 −1)↑2 ​𝑏↓𝑖↑2 /​(1− ​𝜌↑∗ ​𝜆↓𝑖 )↑2    = ​​​𝜆↓1↑2 (1− ​𝜌↑∗ )↑2 ​𝜎↑2 + ​(​𝜆↓1 −1)↑2 ​𝑏↓1↑2 /​(1− ​𝜌↑∗ ​𝜆↓1 )↑2   

§  The	op6mal	 ​𝜌↑∗ 	that	minimize	the	MSE	is	
																																												​𝜌↑∗ = ​​𝜆↓1 ​𝜎↑2 −(1− ​𝜆↓1 )​𝑏↓1↑2 /​
𝜆↓1 ​𝜎↑2  	

Denoiser:

𝑊=𝑈Λ ​𝑈↑𝑇  



		Adap%ve	boos%ng	(AB)	
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​  𝜌↑∗ = ​√⁠​𝐸↓𝒚  /
√⁠​𝐸↓𝒚  +√⁠​𝐸↓𝐱   	

§  The	 ​𝑏↓1↑2 	stands	for	the	energy	strength	in	patch	𝐱	àpatches	
with	different	characteris6cs	should	be	assigned	different	​𝜌↑∗ s.	

§  ​𝜌↑∗ ∈(0.5, 1)	which	sa6sfies	the	convergence	condi6on	
§  We	use	the	same	formula	for	​𝜌↑𝑘 	in	the	𝑘-th	itera6on	of	AB,	

the	adap6ve	boos6ng	becomes	

§  The	feedback	factor	1-​𝜌↑𝑘 	decreases	as	𝑘	increases			ü		increases			ü	

§  Given	the	formula	of	op6mal	​𝜌↑∗ 	from	fixed	point	analysis		
   ​𝜌↑∗ = ​​𝜆↓1 ​𝜎↑2 −(1− ​𝜆↓1 )​𝑏↓1↑2 /​𝜆↓1 ​𝜎↑2   ,	es6mate  ​𝜆↓1 =√⁠​​
𝐸↓𝐱 /​𝐸↓𝒚     , ​𝑏↓1↑2 = ​𝐸↓x   ,	we	have 

​𝜌↑𝑘 = ​√⁠​𝐸↓​​𝐱 ↑𝑘−1   /√⁠​𝐸↓​​𝐱 ↑𝑘−1   +√⁠​max​(𝐸↓​​𝐱 ↑𝑘−1  − ​𝜎↑2 ,0)   



		Adap%ve	boos%ng	
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​𝜌↑𝑘 = ​√⁠​𝐸↓​​𝐱 ↑𝑘−1   /√⁠​𝐸↓​​𝐱 ↑𝑘
−1   +√⁠​max​(𝐸↓​​𝐱 ↑𝑘−1  − ​

𝜎↑2 ,0)   



	Convergence	analysis	
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Assuming	matrix	approxima6on	of	𝑓(⋅)≈𝑊		

§  Difference	between	the 𝑘-th	es6mate	and	the	fixed	point	-th	es6mate	and	the	fixed	point	
            ​𝒆↑𝑘 = ​​𝐱 ↑𝑘 − ​​𝐱 ↑∗  

                 =𝑊(​𝜌↑𝑘 ​​𝐱 ↑𝑘−1 +(1− ​𝜌↑𝑘 )𝐲)−𝑊(​𝜌↑∗ ​​𝐱 ↑∗ +(1− ​
𝜌↑∗ )𝐲)


§  Aier	a	large	number	of	itera6ons,	replace	​𝜌↑𝑘 	by	 ​𝜌↑∗ 	
                ​𝒆↑𝑘 = ​𝜌↑∗ 𝑊(​​𝐱 ↑𝑘−1 − ​​𝐱 ↑∗ )= ​𝜌↑∗ 𝑊​𝒆↑𝑘−1 = ​​𝜌↑∗ ↑𝑘 ​𝑊↑𝑘 ​

𝒆↑0 	

§ 		We	have	0< ​𝜌↑∗ <1	and	0≤𝑊<1	(the	denoising	operator	
is	contrac6ve)	

§ 	 ​𝒆↑𝑘 →𝟎	as	𝑘→∞		as	𝑘→∞	

§ 	Our	AB	algorithm	converges	



	Test	images	
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The	20	test	images	commonly	used	in	experiments:	



Numerical	results	
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AB	gives	the	best	PSNR	result	for	every	images	(20	test	images)	and	
the	improvement	over	others	increases	with	noise	variance	



Numerical	results	
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AB	gives	the	best	PSNR	result	for	every	images	(20	test	images)	and	
the	improvement	over	others	increases	with	noise	variance	



			Visual	comparison	
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		Comparison	with	lower	bound	
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AB	performs	closest	to	the	Cramer-Rao	lower	bound	

Chatterjee and Milanfar. Is denoising dead? IEEE Trans. Image Proc., April 2010. 
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•  AB	works	as	a	preprocessing	step	in	each	itera6on	
before	the	image	is	denoised	by	leading	method	

•  Complexity	of	AB	is	ignorable	compared	with	the	main	
denoising	algorithm	

•  AB	is	block-based	to	adapt	to	non-sta6onarity	
•  The	idea	of	AB	is	very	generic		

•  Can	be	combined	with	training/learning-based	approach	

•  AB	is	applicable	to	other	representa6ve	methods	
•  Such	as	BM3D	and	K-SVD	



	Remarks	
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•  AB	is	applicable	to	other	representa6ve	methods	
•  Fresh	PSNR	results	(in	dB)	from	BM3D+AB	

Sigma = 25	 BM3D	 BM3D+SOS	 BM3D+AB	

Foreman	 33.41	 33.48	 33.49	
Lena	 32.02	 32.04	 32.05	
House	 32.90	 32.90	 32.93	

FingerPrint	 27.72	 27.72	 27.74	
Peppers	 31.87	 31.89	 31.90	



			Image	denoising	--	for	real!			
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§  Images	taken	by	low-	and	high-end	smart	phones	

3264x2448 4160x3120 



			Image	denoising	--	for	real!			
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§  Images	taken	by	low-	and	high-end	smart	phones	

1031x754 window 1259x771 window 



			Image	deblurring			
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§  Could	be	part	of	denoising	



			Image	super-resolu%on			
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			Face	super-resolu%on	for	recogni%on			
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			Image	inpain%ng			
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