Proximal-Based Methods Tutorial

Amir Beck

Technion - Israel Institute of Technology Haifa, Israel

Tutorial Overview

The tutorial is all about first order methods, specifically those based on proximal computations

- Background: extended real-valued functions, subgradients, conjugate functions, the proximal operator
- proximal gradient
- fast proximal gradient (FISTA)
- smoothing
- block proximal gradient
- dual proximal gradient

Complement of Tutorial Overview

Unfortunately, the following important topics are not included:

- primal and dual projected subgradient
- non-Euclidean algorithms (mirror descent, non-Euclidean proximal gradient)
- conditional gradient
- alternating minimization
- ADMM

Underlying Spaces

▶ We will assume that the underlying vector spaces, usually denoted by \mathbb{V} or \mathbb{E} , are finite dimensional real inner product spaces with endowed inner product $\langle \cdot, \cdot \rangle$ and endowed norm $\| \cdot \|$.

Euclidean space: a finite dimensional real vector space equipped with an inner product $\langle \cdot, \cdot \rangle$ endowed with the norm $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$, which is also called the Euclidean norm.

 Except for one case, we will always assume that the underlying vector space is Euclidean

Extended Real-Valued Functions

- D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and optimization (2013).
- ▶ R. T. Rockafellar, *Convex analysis* (1970).

Extended Real-Valued Functions

- ► An extended real-valued function is a function defined over the entire underlying space that can take any real value, as well as the infinite values -∞ and ∞.
- Infinite values arithmetic:

$$\begin{array}{rcl} a+\infty=\infty+a&=\infty&(-\infty< a<\infty),\\ a-\infty=-\infty+a&=-\infty&(-\infty< a<\infty),\\ a\cdot\infty=\infty+a&=-\infty&(0< a<\infty),\\ a\cdot\infty=\infty+a&=\infty&(0< a<\infty),\\ a\cdot\infty=\infty-a&=-\infty&(0< a<\infty),\\ a\cdot\infty=\infty-a&=-\infty&(-\infty< a<0),\\ a\cdot(-\infty)=(-\infty)+a&=\infty&(-\infty< a<0),\\ 0\cdot\infty=\infty\cdot 0=0\cdot(-\infty)=(-\infty)+0&=0. \end{array}$$

For an extended real-valued function f : E → [-∞,∞], the effective domain or just the domain is the set

$$\operatorname{dom}(f) = \{ \mathbf{x} \in \mathbb{E} : f(\mathbf{x}) < \infty \}.$$

For any subset $C \subseteq \mathbb{E}$, the indicator function of C is

$$\delta_{C}(\mathbf{x}) = \begin{cases} 0 & \mathbf{x} \in C, \\ \infty & \mathbf{x} \notin C. \end{cases}$$

Closedness

The epigraph of an extended real-valued function f : E → [-∞, ∞] is defined by

 $\operatorname{epi}(f) = \{(\mathbf{x}, y) : f(\mathbf{x}) \leq y, \mathbf{x} \in \mathbb{E}, y \in \mathbb{R}\} \subseteq \mathbb{E} \times \mathbb{R}.$

- A function f : E → [-∞, ∞] is called proper if it does not attain the value -∞ and there exists at least one x̂ ∈ E such that f(x̂) < ∞, meaning that dom(f) ≠ Ø.
- A function $f : \mathbb{E} \to [-\infty, \infty]$ is called closed if its epigraph is closed.

Theorem. The indicator function δ_C is closed if and only if C is closed.

Proof.

$$\operatorname{epi}(f) = \{(\mathbf{x}, y) \in \mathbb{E} \times \mathbb{R} : \delta_{\mathcal{C}}(\mathbf{x}) \leq y\} = \mathcal{C} \times \mathbb{R}_+,$$

which is evidently closed if and only if C is closed. \Box

$$f(x) = \begin{cases} \frac{1}{x}, & x > 0, \\ \infty, & \text{else.} \end{cases}$$

f is closed.

Lower Semicontinuity

Definition

▶ A function $f : \mathbb{E} \to [-\infty, \infty]$ is called lower semicontinuous at $\mathbf{x} \in \mathbb{E}$ if

 $f(\mathbf{x}) \leq \liminf_{n\to\infty} f(\mathbf{x}_n),$

for any sequence $\{\mathbf{x}_n\}_{n\geq 1} \subseteq \mathbb{E}$ for which $\mathbf{x}_n \to \mathbf{x}$ as $n \to \infty$.

A function f : E → [-∞, ∞] is called lower semicontinuous if it is lower semicontinuous at each point in E.

Theorem. The following claims are equivalent:

- (i) f is lower semicontinuous.
- (ii) f is closed.
- (iii) for any $\alpha \in \mathbb{R}$, the level set

$$Lev(f,\alpha) = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \le \alpha \}$$

is closed.

Operations Preserving Closedness

Theorem.

(a) Let $\mathcal{A} : \mathbb{E} \to \mathbb{V}$ be a linear transformation and $\mathbf{b} \in \mathbb{V}$, and let $f : \mathbb{V} \to (-\infty, \infty]$ be closed. Then the function $g : \mathbb{E} \to [-\infty, \infty]$ given by

$$g(\mathbf{x}) = f(\mathcal{A}(\mathbf{x}) + \mathbf{b})$$

is closed.

- (b) Let $f_1, f_2, \ldots, f_m : \mathbb{E} \to (-\infty, \infty]$ be extended real-valued closed functions, and let $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{R}_+$. Then the function $f = \sum_{i=1}^m \alpha_i f_i$ is closed.
- (c) Let $f_i : \mathbb{E} \to (-\infty, \infty], i \in I$ be extended real-valued closed functions, where I is a given index set. Then the function

$$f(\mathbf{x}) = \max_{i \in I} f_i(\mathbf{x}).$$

is closed.

Weierstrass theorem for closed functions

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper closed function, and assume that C is a compact set satisfying $C \cap \operatorname{dom}(f) \neq \emptyset$. Then

- (a) f is bounded below over C.
- (b) f attains a minimizer over C.
- ▶ A proper function $f : \mathbb{E} \to (-\infty, \infty]$ is called coercive if

 $\lim_{\|\mathbf{x}\|\to\infty}f(\mathbf{x})=\infty.$

Theorem. (attainment under coerciveness) Let $f : \mathbb{E} \to (-\infty, \infty]$ be a closed proper and coercive function and let $S \subseteq \mathbb{E}$ be a nonempty closed set satisfying $S \cap \text{dom}(f) \neq \emptyset$. Then f attains a minimizer over S.

Convex Extended Real-Valued Functions

- An extended real-valued function is called convex if epi(f) is convex.
- f: E→ (-∞,∞] is convex ⇔ dom(f) is convex and the real-valued function
 f̃: dom(f) → R which is the restriction of f to dom(f) is convex over dom(f).
- ▶ Result: A proper function $f : \mathbb{E} \to (-\infty, \infty]$ is convex iff

 $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) \text{ for all } \lambda \in [0, 1], \mathbf{x}, \mathbf{y} \in \mathbb{E}$

Jensen's inequality

$$f\left(\sum_{i=1}^k \lambda_i \mathbf{x}_i\right) \leq \sum_{i=1}^k \lambda_i f_i(\mathbf{x}_i)$$

for any $\lambda \in \Delta_k$ (k being an arbitrary positive integer), $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{E}$.

Operations Preserving Convexity

Theorem.

(a) Let $\mathcal{A} : \mathbb{E} \to \mathbb{V}$ be a linear transformation from \mathbb{E} to \mathbb{V} and $\mathbf{b} \in \mathbb{V}$, and let $f : \mathbb{V} \to (-\infty, \infty]$ be convex. Then $g : \mathbb{E} \to (-\infty, \infty]$ given by

 $g(\mathbf{x}) = f(\mathcal{A}(\mathbf{x}) + \mathbf{b})$

is convex.

(b) Let
$$f_1, f_2, \ldots, f_m : \mathbb{E} \to (-\infty, \infty]$$
 be convex, and let $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{R}_+$. Then the function $\sum_{i=1}^m \alpha_i f_i$ is convex.

(c) Let $f_i : \mathbb{E} \to (-\infty, \infty], i \in I$ be convex, where I is a given index set. Then the function

$$f(\mathbf{x}) = \max_{i \in I} f_i(\mathbf{x})$$

is convex.

Closedness Vs. Continuity

Closed functions are not necessarily continuous, but...

- If f : E → [-∞,∞] is continuous over dom(f), which is assumed to be closed, then it is closed.
- ▶ 1D closed and convex functions are always continuous over their domain.
- Not correct for multi-dimensional functions...

Example: the I_0 -norm function $f : \mathbb{R}^n \to \mathbb{R}$ given by

 $f(\mathbf{x}) = \|\mathbf{x}\|_0 \equiv \#\{i : x_i \neq 0\}.$

f is closed but not continuous.

Support Functions

▶ Let $C \subseteq \mathbb{E}$ be nonempty. Then the support function of *C*, $\sigma_C : \mathbb{E} \to (-\infty, \infty]$ is given by

$$\sigma_{C}(\mathbf{y}) \equiv \max_{\mathbf{y} \in C} \langle \mathbf{y}, \mathbf{x} \rangle.$$

Theorem. Let $C \subseteq \mathbb{E}$ be a nonempty set. Then σ_C is a closed and convex function.

Proof. σ_C is a maximum of convex functions.

Examples of Support Functions

С	$\sigma_{C}(\mathbf{y})$	assumptions	Example No.
$\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$	$\max_{i=1,2,\ldots,n} \langle \mathbf{b}_i, \mathbf{y} \rangle$	$\mathbf{b}_i \in \mathbb{E}$	1
K	$\delta_{K^{\circ}}(\mathbf{y})$	K – cone	2
\mathbb{R}^{n}_{+}	$\delta_{\mathbb{R}^{n}_{-}}(\mathbf{y})$	$\mathbb{E} = \mathbb{R}^n$	3
Δ_n	$\max\{y_1, y_2, \ldots, y_n\}$	$\mathbb{E} = \mathbb{R}^n$	4
$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq 0\}$	$\delta_{\{\mathbf{A}^{T} \boldsymbol{\lambda}: \boldsymbol{\lambda} \in \mathbb{R}^{m}_{\perp}\}}(\mathbf{y})$	$\mathbb{E} = \mathbb{R}^n$, $\mathbf{A} \in$	5
		$\mathbb{R}^{m \times n}$	
$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{B}\mathbf{x} = \mathbf{b}\}$	$\langle \mathbf{y}, \mathbf{x}_0 \rangle + \delta_{Range(\mathbf{B}^T)}(\mathbf{y})$	$\mathbb{E} = \mathbb{R}^n$, $\mathbf{B} \in$	6
		$\mathbb{R}^{m \times n}$, b \in	
		\mathbb{R}^m , $\mathbf{B}\mathbf{x}_0 = \mathbf{b}$	
$B_{\parallel \cdot \parallel}[0,1]$	 y *	$\ \cdot\ $ - arbitrary	7
		norm	

A Discontinuous Closed and Convex Function

$$C = \left\{ (x_1, x_2) : x_1 + \frac{x_2^2}{2} \le 0 \right\}.$$

Then

$$\sigma_{C}(\mathbf{y}) = \begin{cases} \frac{y_{2}^{2}}{2y_{1}}, & y_{1} > 0\\ 0, & y_{1} = y_{2} = 0\\ \infty, & \text{else.} \end{cases}$$

Subgradients

- D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and optimization (2013).
- ▶ J. M. Borwein and A. S. Lewis, *Convex analysis and nonlinear optimization* (2006).
- ▶ J. B. Hiriart-Urruty and C. Lemarechal. *Convex analysis and minimization algorithms. I* (1996).
- ▶ Y. Nesterov. Introductory lectures on convex optimization (2004).
- R. T. Rockafellar, *Convex analysis* (1970).

Subgradients

Definition: Let f : E → (-∞,∞] be a proper function, and let x ∈ dom(f). A vector g ∈ E is called a subgradient of f at x if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$
 for all $\mathbf{y} \in \mathbb{E}$.

► The set of all subgradients of f at x is called the subdifferential of f at x and is denoted by ∂f(x):

 $\partial f(\mathbf{x}) \equiv \{\mathbf{g} \in \mathbb{E} : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \text{ for all } \mathbf{y} \in \mathbb{E} \}.$

When $\mathbf{x} \notin \text{dom}(f)$, we define $\partial f(\mathbf{x}) = \emptyset$.

Closedness and Convexity of the Subdifferential Set

Theorem. Let $f : \mathbb{E} \to (\infty, \infty]$ be an extended real-valued function. Then the set $\partial f(\mathbf{x})$ is closed and convex for any $\mathbf{x} \in \mathbb{E}$.

Proof. For any $\mathbf{x} \in \mathbb{E}$,

$$\partial f(\mathbf{x}) = \bigcap_{\mathbf{y} \in \mathbb{E}} H_{\mathbf{y}},$$

where $H_{\mathbf{y}} = \{\mathbf{g} \in \mathbb{E} : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle\}$. Since the sets $H_{\mathbf{y}}$ are half-spaces, and in particular, closed and convex, it follows that $\partial f(\mathbf{x})$ is closed and convex. \Box

Subdifferentiability

If ∂f(x) ≠ Ø, f it is called subdifferentiable at x.
dom(∂f) ≡ {x ∈ E : ∂f(x) ≠ Ø}.

Example:

$$f(x) = \left\{ egin{array}{cc} -\sqrt{x}, & x \geq 0, \\ \infty, & ext{else.} \end{array}
ight.$$

Existence and Boundedness of $\partial f(\mathbf{x})$

Theorem. Let $f:\mathbb{E} \to (-\infty,\infty]$ be a proper convex function.

- ▶ If $\tilde{\mathbf{x}} \in int(dom(f))$, then $\partial f(\tilde{\mathbf{x}})$ is nonempty and bounded.
- If $\tilde{\mathbf{x}} \in ri(dom(f))$, then $\partial f(\tilde{\mathbf{x}})$ is nonempty.

Corollary. Let $f : \mathbb{E} \to \mathbb{R}$ be a convex function. Then f is subdifferentiable over \mathbb{E} .

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper convex function, and assume that $X \subseteq \operatorname{int}(\operatorname{dom}(f))$ is nonempty and compact. Then $Y = \bigcup_{\mathbf{x} \in X} \partial f(\mathbf{x})$ is nonempty and bounded.

The Directional Derivative

Let f : E → (-∞, ∞] be a proper extended real-valued function and let x ∈ int(dom(f)). Suppose that 0 ≠ d ∈ E. The directional derivative at x in the direction 0 ≠ d ∈ E, if exists, is defined by

$$f'(\mathbf{x}; \mathbf{d}) = \lim_{\alpha \to 0^+} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}.$$

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper convex function, and let $\mathbf{x} \in int(dom(f))$. Then for any $\mathbf{d} \in \mathbb{E}$, the directional derivative $f'(\mathbf{x}; \mathbf{d})$ exists.

Differentiability

Definition. For a given function $f : \mathbb{E} \to (-\infty, \infty]$, and $\mathbf{x} \in int(dom(f))$, we say that f is differentiable at \mathbf{x} if there exists $\mathbf{g} \in \mathbb{E}$ such that

 $f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{h} \rangle + o(\|\mathbf{h}\|).$

In other words, $\lim_{\mathbf{h}\to\mathbf{0}} \frac{f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-\langle \mathbf{g},\mathbf{h}\rangle}{\|\mathbf{h}\|} = 0.$

g is called the gradient, and is denoted by $\nabla f(\mathbf{x})$

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$, and suppose that f is differentiable at $\mathbf{x} \in int(\text{dom } f)$. Then for any $\mathbf{d} \neq \mathbf{0}$

 $f'(\mathbf{x};\mathbf{d}) = \langle \nabla f(\mathbf{x}), \mathbf{d} \rangle.$

Proof. $0 = \lim_{\alpha \to 0^+} \frac{f(\mathbf{x}+\alpha \mathbf{d}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \alpha \mathbf{d} \rangle}{\|\alpha \mathbf{d}\|} = \frac{f'(\mathbf{x}; \mathbf{d}) - \langle \nabla f(\mathbf{x}), \mathbf{d} \rangle}{\|\mathbf{d}\|}$, and hence $f'(\mathbf{x}; \mathbf{d}) = \langle \nabla f(\mathbf{x}), \mathbf{d} \rangle$. \Box

The Subdifferential at Differentiability Points

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper convex function, and let $\mathbf{x} \in int(dom(f))$. If f is differentiable at \mathbf{x} , then $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}$. Conversely, if f has a unique subgradient at \mathbf{x} , then f is differentiable at \mathbf{x} and $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}$.

Example: $f(\mathbf{x}) = \|\mathbf{x}\|_2$ ($\mathbb{E} = \mathbb{R}^n$). Then $\partial f(\mathbf{x}) = \begin{cases} \left\{ \frac{\mathbf{x}}{\|\mathbf{x}\|_2} \right\}, & \mathbf{x} \neq \mathbf{0}, \\ B_{\|\cdot\|_2}[\mathbf{0}, 1], & \mathbf{x} = \mathbf{0}. \end{cases}$

What is the Gradient?

Example 1: $\mathbb{E} = \mathbb{R}^n$ with $\langle \mathbf{x}, \mathbf{y} \rangle \equiv \mathbf{x}^T \mathbf{y}$: $\nabla f(\mathbf{x}) = D_f(\mathbf{x})$

$$D_f(\mathbf{x}) \equiv egin{pmatrix} rac{\partial f}{\partial x_1}(\mathbf{x}) \ rac{\partial f}{\partial x_2}(\mathbf{x}) \ dots \ rac{\partial f}{\partial x_n}(\mathbf{x}) \end{pmatrix}.$$

• **Example 2:** $\mathbb{E} = \mathbb{R}^n$ with $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{H} \mathbf{y}$ with $\mathbf{H} \in \mathbb{S}_{++}^n$: $\nabla f(\mathbf{x}) = \mathbf{H}^{-1} D_f(\mathbf{x}).$

Subdifferential Calculus

Theorem. Let $f_1, f_2 : \mathbb{R}^n \to (-\infty, \infty]$ be proper extended real-valued convex functions. Let $\mathbf{x} \in \text{dom}(f_1) \cap \text{dom}(f_2)$. Then

(a) The following inclusion holds (weak result):

 $\partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}) \subseteq \partial (f_1 + f_2)(\mathbf{x})$

(b) If in addition either x ∈ int(dom(f₁)) ∩ int(dom(f₂)), then (strong result):

 $\partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}) = \partial (f_1 + f_2)(\mathbf{x}).$

Sum Rule of Subdifferential Calculus - General Result

Theorem. Let f_1, f_2, \ldots, f_m be proper convex functions and assume that $\bigcap_{i=1}^m \operatorname{ri}(\operatorname{dom} f_i) \neq \emptyset$. Then for any **x**

$$\partial f(\mathbf{x}) = \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}) + \ldots + f_m(\mathbf{x})$$

Subdifferential Calculus - Affine Change of Variables

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper convex function and $\mathcal{A} : \mathbb{V} \to \mathbb{E}$ be a linear transformation. Let $h(\mathbf{x}) = f(\mathcal{A}(\mathbf{x}) + \mathbf{b})$ with $\mathbf{b} \in \mathbb{E}$. Assume that h is proper:

$$\operatorname{dom}(h) = \{\mathbf{x} \in \mathbb{V} : \mathcal{A}(\mathbf{x}) + \mathbf{b} \in \operatorname{dom}(f)\} \neq \emptyset.$$

 (a) (weak affine transformation rule of subdifferential calculus) For any x ∈ dom(h),

 $\mathcal{A}^{\mathsf{T}}(\partial f(\mathcal{A}(\mathbf{x}) + \mathbf{b})) \subseteq \partial h(\mathbf{x}).$

(b) (affine transformation rule of subdifferential calculus) If $\mathbf{x} \in int(dom(h))$ and $\mathcal{A}(\mathbf{x}) + \mathbf{b} \in int(dom(f))$, then

$$\partial h(\mathbf{x}) = \mathcal{A}^T (\partial f(\mathcal{A}(\mathbf{x}) + \mathbf{b})).$$

Chain Rule of Subdifferential Calculus

Theorem Let $f : \mathbb{E} \to \mathbb{R}$ be a convex function and let $g : \mathbb{R} \to \mathbb{R}$ be a nondecreasing convex function. Let $\mathbf{x} \in \mathbb{E}$ and suppose that g is differentiable at the point $f(\mathbf{x})$. Let $h = g \circ f$. Then

 $\partial h(\mathbf{x}) = g'(f(\mathbf{x}))\partial f(\mathbf{x}).$

Max Rule of Subdifferential Calculus

Lemma. Let $f_1, f_2, \ldots, f_m : \mathbb{E} \to (-\infty, \infty]$ be proper extended real-valued convex functions and let

 $f(\mathbf{x}) \equiv \max\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x})\}.$

Let $\mathbf{x} \in \bigcap_{i=1}^{m} \operatorname{int}(\operatorname{dom}(f_i))$. Then

$$\partial f(\mathbf{x}) = \operatorname{conv}\left(\bigcup_{i \in I(\mathbf{x})} \partial f_i(\mathbf{x})\right),$$

where

$$I(\mathbf{x}) = \{i \in \{1, 2, \dots, m\} : f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

Lipschitz Continuity and Boundedness of Subgradients

Theorem.Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper and convex function. Suppose that $X \subseteq \operatorname{int}(\operatorname{dom} f)$. Consider the following two claims: (i) $|f(\mathbf{x}) - f(\mathbf{y})| \le L ||\mathbf{x} - \mathbf{y}||$ for any $\mathbf{x}, \mathbf{y} \in X$; (ii) $||\mathbf{g}||_* \le L$ for any $\mathbf{g} \in \partial f(\mathbf{x}), \mathbf{x} \in X$. Then (a) the implication (*ii*) \Rightarrow (*i*) holds;

(b) if X is open then (i) holds if and only if (ii) holds.

Fermat's Optimality Condition

Theorem. Let
$$f : \mathbb{E} \to (-\infty, \infty]$$
 be an extended real-valued convex function. Then
 $\mathbf{x}^* \in \operatorname{argmin}\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}$ (1)
if and only if
 $\mathbf{0} \in \partial f(\mathbf{x}^*)$

Proof. $\mathbf{0} \in \partial f(\mathbf{x}^*)$ is satisfied iff

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \langle \mathbf{0}, \mathbf{x} - \mathbf{x}^*
angle$$
 for any $\mathbf{x} \in \mathsf{dom}(f)$,

which is the the same as (1).

Fermat-Weber Problem

Given *m* different points in \mathbb{R}^d , $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ ("anchors") and *m* positive weights $\omega_1, \omega_2, \dots, \omega_m$, the Fermat-Weber problem is given by

(FW)
$$\min_{\mathbf{x}\in\mathbb{R}^d}\left\{f(\mathbf{x})\equiv\sum_{i=1}^m\omega_i\|\mathbf{x}-\mathbf{a}_i\|_2\right\}.$$

$$\partial f(\mathbf{x}) = \sum_{i=1}^{m} \partial f_i(\mathbf{x}) = \begin{cases} \sum_{i=1}^{m} \omega_i \frac{\mathbf{x} - \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|_2}, & \mathbf{x} \notin \mathcal{A}, \\ \sum_{i=1, i \neq j}^{m} \omega_i \frac{\mathbf{x} - \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|_2} + B[\mathbf{0}, \omega_j], & \mathbf{x} = \mathbf{a}_j (j \in [m]). \end{cases}$$

- By Fermat's optimality optimality condition, x^{*} is an optimal solution iff 0 ∈ ∂f(x^{*}), meaning iff
- ▶ $\mathbf{x}^* \notin \mathcal{A}$ and $\sum_{i=1}^m \omega_i \frac{\mathbf{x}^* \mathbf{a}_i}{\|\mathbf{x}^* \mathbf{a}_i\|_2} = \mathbf{0}$ or for some $j \in \{1, 2, ..., m\}$ $\mathbf{x}^* = \mathbf{a}_j$ and $\left\| \sum_{i=1, i \neq j}^m \omega_i \frac{\mathbf{x}^* - \mathbf{a}_i}{\|\mathbf{x}^* - \mathbf{a}_i\|_2} \right\|_2 \le \omega_j.$ [Sturm, 1884] [Weiszfeld, 1937]

Amir Beck

Optimality Conditions for the Composite Model (Mixed Convex/Nonconvex)

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be proper, and let $g : \mathbb{E} \to (-\infty, \infty]$ be a proper convex function such that $\operatorname{dom}(g) \subseteq \operatorname{int}(\operatorname{dom}(f))$. Consider the problem

(P) min $f(\mathbf{x}) + g(\mathbf{x})$.

(a) (necessary condition) If $\mathbf{x}^* \in \text{dom}(g)$ is a local optimal solution of (P), and f is differentiable at \mathbf{x}^* , then

$$-\nabla f(\mathbf{x}^*) \in \partial g(\mathbf{x}^*). \tag{2}$$

(b) (necessary and sufficient condition for convex problems) Suppose that f is convex. If f is differentiable at x^{*} ∈ dom(g), then x^{*} is a global optimal solution of (P) if and only if (2) is satisfied.

Stationarity in Composite Models

(P) min $f(\mathbf{x}) + g(\mathbf{x})$.

- ▶ $f : \mathbb{E} \to (-\infty, \infty]$ proper.
- ▶ $g : \mathbb{E} \to (-\infty, \infty]$ proper convex.
- ▶ dom(g) ⊆ int(dom(f)).

Definition A point $\mathbf{x}^* \in \text{dom } g$ in which f is differentiable is called a stationarity point of (P) if $-\nabla f(\mathbf{x}^*) \in \partial g(\mathbf{x}^*)$

Example: If $g(\mathbf{x}) = \delta_C(\mathbf{x})$ for convex C, then stationarity is the same as

 $\langle
abla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \geq 0$

Example: min $f(\mathbf{x}) + \lambda \|\mathbf{x}\|_1$ ($f : \mathbb{R}^n \to \mathbb{R}$), then stationarity is

$$\frac{\partial f(\mathbf{x}^*)}{\partial x_i} \begin{cases} = -\lambda, & x_i^* > 0, \\ = \lambda, & x_i^* < 0, \\ \in [-\lambda, \lambda], & x_i^* = 0. \end{cases}$$

Amir Beck
Conjugate Functions

- D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and optimization (2013).
- J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization (2006).
- ▶ J. B. Hiriart-Urruty and C. Lemarechal. *Convex analysis and minimization algorithms. I* (1996).
- R. T. Rockafellar, *Convex analysis* (1970).

Conjugate Functions

Definition. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper extended real-valued function. The function $f : \mathbb{E} \to [-\infty, \infty]$ defined by

$$f^*(\mathbf{y}) = \max_{\mathbf{x} \in \mathbb{E}} \{ \langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x}) \}.$$

is called the conjugate function of f.

Result: Conjugate functions are **always** closed and convex (regardless of the properties of f) **Example:** $f = \delta_C$, where $C \subseteq \mathbb{E}$ is nonempty. Then for any $\mathbf{y} \in \mathbb{E}$

$$f^*(\mathbf{y}) = \max_{\mathbf{x} \in \mathbb{E}} \{ \langle \mathbf{y}, \mathbf{x} \rangle - \delta_{\mathcal{C}}(\mathbf{x}) \} = \max_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{y}, \mathbf{x} \rangle = \sigma_{\mathcal{C}}(\mathbf{y}).$$

$$\delta_{\mathcal{C}}^* = \sigma_{\mathcal{C}}.$$

The Biconjugate

The conjugacy operation can be invoked twice resulting with the biconjugacy operation. Specifically, for a function f we define

 $f^{**}(\mathbf{x}) = \max_{\mathbf{y} \in \mathbb{E}} \langle \mathbf{x}, \mathbf{y}
angle - f^{*}(\mathbf{y})$

Theorem $(f \ge f^{**})$. Let $f : \mathbb{E} \to [-\infty, \infty]$ be an extended real-valued function. Then $f(\mathbf{x}) \ge f^{**}(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{E}$.

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a closed and proper extended real-valued function. Then $f^{**} = f$.

Fenchel's Inequality

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be an extended real-valued proper function. Then for any $\mathbf{x} \in \mathbb{E}, \mathbf{y} \in \mathbb{E}$

 $f(\mathbf{x}) + f^*(\mathbf{y}) \ge \langle \mathbf{y}, \mathbf{x} \rangle.$

Simple Calculus Rules

function definition	conjugate
$g(\mathbf{x}_1,\ldots,\mathbf{x}_m) = \sum_{i=1}^m f_i(\mathbf{x}_i)$	$g^*(\mathbf{y}_1,\ldots,\mathbf{y}_m) = \sum_{i=1}^m f_i^*(\mathbf{y}_i)$
$g(\mathbf{x}) = lpha f(\mathbf{x})$	$m{g}^*(m{y}) = lpha f^*(m{y} / lpha)$
$g(\mathbf{x}) = lpha f(\mathbf{x} / lpha)$	$g^*(\mathbf{y}) = lpha f^*(\mathbf{y})$
$\int f(\mathcal{A}(\mathbf{x} - \mathbf{a})) + \langle \mathbf{b}, \mathbf{x} \rangle + c$	$\left \begin{array}{c} f^{*}\left((\mathcal{A}^{\mathcal{T}})^{-1} (\mathbf{y} - \mathbf{b}) ight) + \langle \mathbf{a}, \mathbf{y} angle - c - \langle \mathbf{a}, \mathbf{b} angle \end{array} ight $

Conjugates of Simple Functions

function (f)	dom f	conjugate (f^*)	assumptions
$\frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}^{T}\mathbf{x} + c$	\mathbb{R}^{n}	$\frac{1}{2}(y-b)^{T}A^{-1}(y-b)-$	$\mathbf{A} \succ 0, \mathbf{A} \in \mathbb{R}^{n imes n}, \mathbf{b} \in$
		С	$\mathbb{R}^{n}, c \in \mathbb{R}$
$\sum_{i=1}^n x_i \log x_i$	\mathbb{R}^{n}_{+}	$\sum_{i=1}^{n} e^{y_i-1}$	-
$\sum_{i=1}^{n} x_i \log x_i$	Δ_n	$\log\left(\sum_{i=1}^{n} e^{y_i}\right)$	-
$\log\left(\sum_{i=1}^{n} e^{x_i}\right)$	\mathbb{R}^{n}	$\sum_{i=1}^{n} y_i \log y_i$	-
		$(\operatorname{dom} f^* = \Delta_n)$	
$\delta_{C}(\mathbf{x})$	С	$\sigma_{C}(\mathbf{x})$	$\emptyset \neq C$ arbitrary
$\sigma_{C}(\mathbf{x})$	\mathbb{R}^{n}	$\delta_{C}(\mathbf{x})$	$\emptyset \neq C$ closed, convex
x	\mathbb{R}^{n}	$\delta_{B_{\parallel\cdot\parallel_*}[0,1]}$	$\ \cdot\ $ arbitrary norm
$-\sqrt{1-\ \mathbf{x}\ ^2}$	$B_{\ \cdot\ }[0,1]$	$\sqrt{\ \mathbf{y}\ _*^2+1}$	$\ \cdot\ $ arbitrary norm
$\frac{1}{p} x ^p$	\mathbb{R}	$\frac{1}{q} y ^q$	$p > 1, \frac{1}{p} + \frac{1}{q} = 1$
$\frac{1}{2} \ \mathbf{x}\ ^2$	\mathbb{R}^{n}	$\frac{1}{2} \ \mathbf{y}\ _{*}^{2}$	$\ \cdot\ $ arbitrary norm

Conjugate Subgradient Theorem

Theorem. Let $f : \mathbb{R}^n \to (-\infty, \infty]$ be a proper convex extended real-valued function. The following two claims are equivalent for any $\mathbf{x} \in \mathbb{E}, \mathbf{y} \in \mathbb{E}$: (i) $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y})$. (ii) $\mathbf{y} \in \partial f(\mathbf{x})$. If, in addition f is closed, then (i) and (ii) are equivalent to (iii) $\mathbf{x} \in \partial f^*(\mathbf{y})$.

 If f is proper closed and convex, the conjugate subgradient theorem can be written as

$$\begin{aligned} \partial f^*(\mathbf{y}) &= \arg \max_{\mathbf{x}} \left\{ \langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x}) \right\}, \\ \partial f(\mathbf{x}) &= \arg \max_{\mathbf{y}} \left\{ \langle \mathbf{x}, \mathbf{y} \rangle - f^*(\mathbf{y}) \right\} \end{aligned}$$

Fenchel's Duality Theorem

(P)
$$\min_{\mathbf{x}\in\mathbb{E}} f(\mathbf{x}) + g(\mathbf{x}).$$

Lagrangian duality:

•
$$\min_{\mathbf{x},\mathbf{z}\in\mathbb{E}} \{f(\mathbf{x}) + g(\mathbf{z}) : \mathbf{x} = \mathbf{z}\}$$

Lagrangian:

 $L(\mathbf{x}, \mathbf{z}; \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z}) + \langle \mathbf{y}, \mathbf{z} - \mathbf{x} \rangle = -\left[\langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x}) \right] - \left[\langle -\mathbf{y}, \mathbf{z} \rangle - g(\mathbf{z}) \right].$

► Dual objective function: $q(\mathbf{y}) = \min_{\mathbf{x}, \mathbf{z}} L(\mathbf{x}, \mathbf{z}; \mathbf{y}) = -f^*(\mathbf{y}) - g^*(-\mathbf{y})$

Fenchel's dual problem:

(D)
$$\max_{\mathbf{y}\in\mathbb{E}^*}\{-f^*(\mathbf{y})-g^*(-\mathbf{y})\}.$$

Theorem (Fenchel's duality theorem) Let $f, g : \mathbb{E} \to (-\infty, \infty]$ be proper convex functions. If $ri(dom(f)) \cap ri(dom(g)) \neq \emptyset$, then

$$\min_{\mathbf{x}\in\mathbb{E}}\{f(\mathbf{x})+g(\mathbf{x})\}=\max_{\mathbf{y}\in\mathbb{E}^*}\{-f^*(\mathbf{y})-g^*(-\mathbf{y})\},$$

and the maximum in the right-hand problem is attained whenever it is finite.

Amir Beck

The Proximal Operator

- J. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France (1965).
- H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces (2011).
- P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward backward splitting, Multiscale Model. Simul. (2005).
- ▶ N. Parikh and S. Boyd, *Proximal algorithms*, Foundations and Trends in Optimization (2014).

The Proximal Operator

Definition. Given a closed, proper and convex function g, the proximal mapping of g is defined by

$$\operatorname{prox}_{g}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ g(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^{2} \right\}.$$

Examples

Constant. If $f \equiv c$ for some $c \in \mathbb{R}$, then

$$\operatorname{prox}_{f}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ c + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^{2} \right\} = \mathbf{x}$$

The identity mapping.

▶ Affine. Let $f(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle + b$, where $\mathbf{a} \in \mathbb{E}$ and $b \in \mathbb{R}$. Then

$$\operatorname{prox}_{f}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ \langle \mathbf{a}, \mathbf{u} \rangle + b + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^{2} \right\}$$
$$= \mathbf{x} - \mathbf{a}.$$

▶ Let $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{x} + c$, where $\mathbf{A} \in \mathbb{S}^n_+$, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. The vector $\operatorname{prox}_f(\mathbf{x})$ is the solution of

$$\min_{\mathbf{u}\in\mathbb{E}}\left\{\frac{1}{2}\mathbf{u}^{\mathsf{T}}\mathbf{A}\mathbf{u}+\mathbf{b}^{\mathsf{T}}\mathbf{u}+c+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}\right\}.$$

The optimal solution is attained at **u** satisfying $(\mathbf{A} + \mathbf{I})\mathbf{u} = \mathbf{x} - \mathbf{b}$, and hence

$$\operatorname{prox}_f(\mathbf{x}) = \mathbf{u} = (\mathbf{A} + \mathbf{I})^{-1}(\mathbf{x} - \mathbf{b}).$$

Amir Beck

Proximal-Based Methods

The Orthogonal Projection

Definition. Given a nonempty closed and convex set C ⊆ E and x ∈ E, the orthogonal projection operator P_C : E → C is defined by

$$P_C(\mathbf{x}) \equiv \underset{\mathbf{y} \in C}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|.$$

First projection theorem. Let $C \subseteq \mathbb{E}$ be a nonempty closed convex set. Then $P_C(\mathbf{x})$ is a singleton.

Second projection theorem. Let $C \subseteq \mathbb{E}$ be a nonempty closed and convex set. Let $\mathbf{u} \in C$. Then $\mathbf{u} = P_C(\mathbf{x})$ if and only if

 $\langle \mathbf{x} - \mathbf{u}, \mathbf{y} - \mathbf{u} \rangle \leq 0$ for any $\mathbf{y} \in C$.

Prox of Indicator = Orthogonal Projection

• If $C \subseteq \mathbb{E}$ is nonempty, then $\operatorname{prox}_{\delta_C} = P_C$

$$\operatorname{prox}_{\delta_{\mathcal{C}}}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ \delta_{\mathcal{C}}(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^{2} \right\} = \operatorname{argmin}_{\mathbf{u} \in \mathcal{C}} \|\mathbf{u} - \mathbf{x}\|^{2} = P_{\mathcal{C}}(\mathbf{x}).$$

First prox theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper closed and convex function. Then $\operatorname{prox}_f(\mathbf{x})$ is a singleton for any $\mathbf{x} \in \mathbb{E}$.

Proof?

Strongly Convex Functions

Definition. A function $f : \mathbb{E} \to (-\infty, \infty]$ is called σ -strongly convex for a given $\sigma > 0$, if dom(f) is convex and the following inequality holds for any $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$ and $\lambda \in [0, 1]$:

$$f(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1-\lambda)f(\mathbf{y}) - rac{1}{2}\sigma\lambda(1-\lambda)\|\mathbf{x}-\mathbf{y}\|^2.$$

• A function is strongly convex if it is σ -strongly convex for some $\sigma > 0$.

Theorem. $f : \mathbb{E} \to (-\infty, \infty]$ is a strongly convex function if and only if the function $f(\cdot) - \frac{\sigma}{2} \| \cdot \|^2$ is convex.

- ▶ The proof is extremely straightforward.
- > The above characterization is relevant only for Euclidean spaces.
- σ -strongly convex+convex is σ -strongly convex.

Example: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{x} + c$ ($\mathbf{A} \in \mathbb{S}^n, \mathbf{b} \in \mathbb{R}^n, c \in \mathbb{R}$) is strongly convex with parameter $\lambda_{\min}(\mathbf{A})$.

Amir Beck

First Order Characterizations of Strong Convexity

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper closed and convex function. Then for a given $\sigma > 0$, the following three claims are equivalent: (i) f is σ -strongly convex. (ii) $f(\alpha) \ge f(\alpha) \ge f(\alpha) + (\sigma \alpha - \alpha) + \frac{\sigma}{\sigma} \|\alpha - \alpha\|^2$

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + \frac{\sigma}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

for any $\mathbf{x} \in \text{dom}(\partial f), \mathbf{y} \in \text{dom}(f)$ and $\mathbf{g} \in \partial f(\mathbf{x})$.

(iii)

$$\langle \mathbf{g}_{\mathbf{x}} - \mathbf{g}_{\mathbf{y}}, \mathbf{x} - \mathbf{y} \rangle \geq \sigma \|\mathbf{x} - \mathbf{y}\|^2$$

for any $\mathbf{x}, \mathbf{y} \in \text{dom}(\partial f)$ and $\mathbf{g}_{\mathbf{x}} \in \partial f(\mathbf{x}), \mathbf{g}_{\mathbf{y}} \in \partial f(\mathbf{y})$.

Existence and Uniqueness of a Minimizer of Closed Strongly Convex Functions

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper closed and σ -strongly convex function ($\sigma > 0$). Then

(a) f has a unique minimizer.

(b) $f(\mathbf{x}) - f(\mathbf{x}^*) \ge \frac{\sigma}{2} ||\mathbf{x} - \mathbf{x}^*||^2$ for all $\mathbf{x} \in \text{dom}(f)$, where \mathbf{x}^* is the unique minimizer of f.

Conclusion: the first prox theorem.

First prox theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper closed and convex function. Then $\operatorname{prox}_f(\mathbf{x})$ is a singleton for any $\mathbf{x} \in \mathbb{E}$.

Proof.

• For any $\mathbf{x} \in \mathbb{E}$,

$$\operatorname{prox}_{f}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{u} \in \mathbb{E}} \tilde{f}(\mathbf{u}, \mathbf{x}),$$

where $\tilde{f}(\mathbf{u}, \mathbf{x}) = f(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2$.

- $\tilde{f}(\cdot, \mathbf{x})$ is a proper closed and 1-strongly convex function.
- Therefore, there exists a unique minimizer to the problem in (3).

Amir Beck

Proximal-Based Methods

(3)

Necessity of the Conditions in the First Prox Theorem

• When f is not convex and/or closed, the prox is not guaranteed to uniquely exist, or even to exist at all.

$$\begin{array}{rcl} g_1(x) &\equiv & 0, \\ g_2(x) &= & \left\{ \begin{array}{ll} 0, & x \neq 0, \\ -\lambda, & x = 0, \end{array} \right. \\ g_3(x) &= & \left\{ \begin{array}{ll} 0, & x \neq 0, \\ \lambda, & x = 0. \end{array} \right. \end{array} \end{array}$$

$$\operatorname{prox}_{g_1}(x) = x, \operatorname{prox}_{g_2}(x) = \begin{cases} \{0\}, & |x| < \sqrt{2\lambda}, \\ \{x\}, & |x| > \sqrt{2\lambda}, \\ \{0, x\}, & |x| = \sqrt{2\lambda}. \end{cases}, \quad \operatorname{prox}_{g_3}(x) = \begin{cases} \{x\}, & x \neq 0, \\ \emptyset, & x = 0. \end{cases}$$

- Uniquness is not guaranteed in any case.
- Existence is guaranteed whenever f is proper closed and the function $\mathbf{u} \mapsto f(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} \mathbf{x}\|^2$ is coercive.

Proximal-Based Methods

Basic Calculus Rules

$f(\mathbf{x})$	$\operatorname{prox}_{f}(\mathbf{x})$	assumptions
$\sum_{i=1}^{m} f_i(\mathbf{x}_i)$	$\operatorname{prox}_{f_1}(\mathbf{x}_1) \times \cdots \times \operatorname{prox}_{f_m}(\mathbf{x}_m)$	
$g(\lambda \mathbf{x} + \mathbf{a})$	$\frac{1}{\lambda} \left[\operatorname{prox}_{\lambda^2 g} (\mathbf{a} + \lambda \mathbf{x}) - \mathbf{a} \right]$	$\lambda eq 0, \mathbf{a} \in \mathbb{E}, \ g$ proper
$\lambda g(\mathbf{x}/\lambda)$	$\lambda \mathrm{prox}_{g/\lambda}(\mathbf{x}/\lambda)$	$\lambda > 0$, g proper
$\begin{array}{c} g(\mathbf{x}) + \frac{c}{2} \ \mathbf{x}\ ^2 + \\ \langle \mathbf{a}, \mathbf{x} \rangle + \gamma \end{array}$	$\operatorname{prox}_{\frac{1}{c+1}g}(\frac{x-a}{c+1})$	$egin{array}{ccc} \mathbf{a} \in \mathbb{E}, oldsymbol{c} > \ 0, \gamma \in \mathbb{R}, egin{array}{ccc} \mathbb{R}, egin{array}{ccc} oldsymbol{g} \ \mathbf{proper} \end{array}$
$g(\mathcal{A}(\mathbf{x}) + \mathbf{b})$	$\mathbf{x} + \frac{1}{\alpha} \mathcal{A}^{T}(\operatorname{prox}_{\alpha g}(\mathcal{A}(\mathbf{x}) + \mathbf{b}) - \mathcal{A}(\mathbf{x}) - \mathbf{b})$	$ \begin{array}{lll} \mathbf{b} & \in & \mathbb{R}^m, \\ \mathcal{A} : \mathbb{V} \to \mathbb{R}^m, \\ g & \text{closed} \\ \text{proper convex}, \\ \mathcal{A} \circ \mathcal{A}^T & = & \alpha I, \\ \alpha > 0 \end{array} $
g(x)	$\begin{aligned} & \operatorname{prox}_g(\ \mathbf{x}\) \frac{\mathbf{x}}{\ \mathbf{x}\ }, & \mathbf{x} \neq 0 \\ & \{\mathbf{u} : \ \mathbf{u}\ = \operatorname{prox}_g(0)\}, & \mathbf{x} = 0 \end{aligned}$	$egin{array}{c} g & ext{proper} \ ext{closed} & ext{convex}, \ ext{dom}(g) & \subseteq \ [0,\infty) \end{array}$

Examples or Prox Computations

f	dom f	prox_{f}	assumptions
$\frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}^{T}\mathbf{x} + c$	\mathbb{R}^{n}	$(\mathbf{A} + \mathbf{I})^{-1}(\mathbf{x} - \mathbf{b})$	$A \in \mathbb{S}_{++}^n$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$
$\lambda \ \mathbf{x}\ $	E	$\left[1-rac{\lambda}{\ x\ } ight]_+x$	Euclidean norm, $\lambda > 0$
$\lambda \ \mathbf{x}\ _1$	\mathbb{R}^{n}	$[\mathbf{x} - \lambda \mathbf{e}]_+ \circ \operatorname{sgn}(\mathbf{x})$	$\lambda > 0$
$-\lambda \sum_{j=1}^n \log x_j$	\mathbb{R}^{n}_{++}	$\left(\frac{x_j + \sqrt{x_j^2 + 4\lambda}}{2}\right)_{j=1}^n$	$\lambda > 0$
$\delta_{C}(\mathbf{x})$	E	$P_{C}(\mathbf{x})$	$C \subseteq \mathbb{E}$
$\lambda \sigma_{C}(\mathbf{x})$	E	$\mathbf{x} - \lambda P_{C}(\mathbf{x}/\lambda)$	C closed and convex
$\lambda \ \mathbf{x}\ $	E	$\mathbf{x} - \lambda P_{B_{\parallel \cdot \parallel *}[0,1]}(\mathbf{x}/\lambda)$	arbitrary norm
$\lambda \max\{x_1, x_2, \ldots, x_n\}$	\mathbb{R}^{n}	$\mathbf{x} - \mathrm{prox}_{\Delta_n}(\mathbf{x}/\lambda)$	$\lambda > 0$
$\lambda d_C(\mathbf{x})$	E	$\mathbf{x} + \min\left\{\frac{\lambda}{d_{\mathcal{C}}(\mathbf{x})}, 1\right\} (P_{\mathcal{C}}(\mathbf{x}) - \mathbf{x})$	C closed convex
$\frac{\lambda}{2} d_C(\mathbf{x})^2$	E	$rac{\lambda}{\lambda+1} P_{\mathcal{C}}(x) + rac{1}{\lambda+1} x$	C closed convex

Prox of I_1 -Norm

•
$$g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 (\lambda > 0)$$

• $g(\mathbf{x}) = \sum_{i=1}^n \varphi(x_i)$, where $\varphi(t) = \lambda |t|$.

• $\operatorname{prox}_{\varphi}(s) = \mathcal{T}_{\lambda}(s)$, where \mathcal{T}_{λ} is defined as

$$\mathcal{T}_\lambda(y) = [|y| - \lambda]_+ \mathrm{sgn}(y) = \left\{egin{array}{cc} y - \lambda, & y \geq \lambda, \ 0, & |y| < \lambda, \ y + \lambda, & y \leq -\lambda \end{array}
ight.$$

is the soft thresholding operator.

▶ By the separability of the l₁-norm, prox_g(x) = (T_λ(x_j))ⁿ_{j=1}. We expend the definition of the soft thresholding operator and write

 $\operatorname{prox}_g(\mathbf{x}) = \mathcal{T}_{\lambda}(\mathbf{x}) \equiv (\mathcal{T}_{\lambda}(x_j))_{j=1}^n = [|\mathbf{x}| - \lambda \mathbf{e}]_+ \odot \operatorname{sgn}(\mathbf{x}).$

The Second Prox Theorem

Theorem Let $g : \mathbb{E} \to (-\infty, \infty]$ be a proper, closed and convex function. Then (i) $\mathbf{u} = \operatorname{prox}_g(\mathbf{x})$. (ii) $\mathbf{x} - \mathbf{u} \in \partial g(\mathbf{u})$. (iii) $g(\mathbf{y}) \ge g(\mathbf{u}) + \langle \mathbf{x} - \mathbf{u}, \mathbf{y} - \mathbf{u} \rangle$ for any $\mathbf{y} \in \mathbb{E}$.

Proof.

 \blacktriangleright (i) is satisfied if and only if **u** a minimizer of the problem

$$\min_{\mathbf{u}}\left\{g(\mathbf{u})+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}\right\}.$$

- By Fermat's optimality condition, this is equivalent to (ii).
- ▶ The equivalence to (iii) follows by the definition of the subgradient.

Generalization of the second projection theorem! **Corollary**: **x** is a minimizer of a closed, proper, convex function f iff $\mathbf{x} = \text{prox}_f(\mathbf{x})$

Firm Nonexpansivity of the Prox Operator

Theorem. For any $\mathbf{x}, \mathbf{y} \in \mathbb{E}$ (i) $\langle \mathbf{x} - \mathbf{y}, \operatorname{prox}_h(\mathbf{x}) - \operatorname{prox}_h(\mathbf{y}) \rangle \ge \|\operatorname{prox}_h(\mathbf{x}) - \operatorname{prox}_h(\mathbf{y})\|^2$. (ii) $\|\operatorname{prox}_h(\mathbf{x}) - \operatorname{prox}_h(\mathbf{y})\| \le \|\mathbf{x} - \mathbf{y}\|$.

Proof.

- Denote $\mathbf{u} = \operatorname{prox}_h(\mathbf{x}), \mathbf{v} = \operatorname{prox}_h(\mathbf{y}).$
- ▶ $\mathbf{x} \mathbf{u} \in \partial h(\mathbf{u}), \mathbf{y} \mathbf{v} \in \partial h(\mathbf{v}).$
- By the subgradient inequality

$$\begin{array}{ll} f(\mathbf{v}) & \geq & f(\mathbf{u}) + \langle \mathbf{x} - \mathbf{u}, \mathbf{v} - \mathbf{u} \rangle, \\ f(\mathbf{u}) & \geq & f(\mathbf{v}) + \langle \mathbf{y} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle. \end{array}$$

- Summing the above two inequalities, we obtain $\langle (\mathbf{x} \mathbf{u}) (\mathbf{y} \mathbf{v}), \mathbf{u} \mathbf{v} \rangle \geq 0$.
- Thus, $\langle \mathbf{u} \mathbf{v}, \mathbf{x} \mathbf{y} \rangle \ge \|\mathbf{u} \mathbf{v}\|^2$.
- ▶ (ii) follows from Cauchy-Schwarz.

Moreau Decomposition

Theorem. Let f be a closed, proper and extended real-valued convex function. Then for any $\mathbf{x} \in \mathbb{E}$

 $\operatorname{prox}_f(\mathbf{x}) + \operatorname{prox}_{f^*}(\mathbf{x}) = \mathbf{x}.$

Proof.

- Let $\mathbf{x} \in \mathbb{E}$, $\mathbf{u} = \operatorname{prox}_{f}(\mathbf{x})$.
- ▶ $\mathbf{x} \mathbf{u} \in \partial f(\mathbf{u})$
- iff $\mathbf{u} \in \partial f^*(\mathbf{x} \mathbf{u})$.
- iff $\mathbf{x} \mathbf{u} = \operatorname{prox}_{f^*}(\mathbf{x})$.

► Thus,

$$\operatorname{prox}_{f}(\mathbf{x}) + \operatorname{prox}_{f^{*}}(\mathbf{x}) = \mathbf{u} + (\mathbf{x} - \mathbf{u}) = \mathbf{x}.$$

A direct consequence (extended Moreau decomposition)

$$\operatorname{prox}_{\lambda f}(\mathbf{x}) + \lambda \operatorname{prox}_{f^*/\lambda}(\mathbf{x}/\lambda) = \mathbf{x}$$

Amir Beck

Proximal-Based Methods

Prox of Support Functions

Let C be a nonempty closed and convex set, and let $\lambda > 0$. Then $\operatorname{prox}_{\lambda\sigma_{C}}(\mathbf{x}) = \mathbf{x} - \lambda P_{C}(\mathbf{x}/\lambda).$

Proof. By the extended Moreau decomposition formula

$$\operatorname{prox}_{\lambda\sigma_{\mathcal{C}}}(\mathbf{x}) = \mathbf{x} - \lambda \operatorname{prox}_{\lambda^{-1}\sigma_{\mathcal{C}}^{*}}(\mathbf{x}/\lambda) = \mathbf{x} - \lambda \operatorname{prox}_{\lambda^{-1}\delta_{\mathcal{C}}}(\mathbf{x}/\lambda) = \mathbf{x} - \lambda P_{\mathcal{C}}(\mathbf{x}/\lambda)$$

Examples:

- $\blacktriangleright \operatorname{prox}_{\lambda \|\cdot\|_{\alpha}}(\mathbf{x}) = \mathbf{x} \lambda P_{B_{\|\cdot\|_{\alpha,*}}[\mathbf{0},1]}(\mathbf{x}/\lambda). (\|\cdot\|_{\alpha} \text{ arbitrary norm})$
- $\blacktriangleright \operatorname{prox}_{\lambda \| \cdot \|_{\infty}}(\mathbf{x}) = \mathbf{x} \lambda P_{B_{\| \cdot \|_{1}}[\mathbf{0},1]}(\mathbf{x}/\lambda).$
- $\operatorname{prox}_{\lambda \max(\cdot)}(\mathbf{x}) = \mathbf{x} \lambda P_{\Delta_n}(\mathbf{x}/\lambda).$

The Proximal Gradient Method

- ► A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. (2009).
- ► A. Beck and M. Teboulle, *Gradient-based algorithms with applications to signal-recovery problems*, In Convex optimization in signal processing and communications (2010)
- ▶ H. Bauschke and P. L. Combettes. *Convex analysis and monotone operator theory in Hilbert spaces* (2011).
- P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward backward splitting, Multiscale Model. Simul. (2005).
- N. Parikh and S. Boyd, *Proximal algorithms*, Foundations and Trends in Optimization (2014).
- J. Nutini, M. Schmidt, I. H. Laradji, M. Friendlander, and H. Koepke, Coordinate descent converges faster with the gauss-southwell rule than random selection, 32nd International Conference on Machine Learning (2015).

Preliminaries – Smoothness

Definition. Let $L \ge 0$. A function $f : \mathbb{E} \to (-\infty, \infty]$ is said to be *L*-smooth over a set $D \subseteq int(dom(f))$ if it is differentiable over D and satisfies

 $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_* \le L \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in D$.

The constant *L* is called the smoothness parameter.

- We consider here also non-Euclidean norms.
- The class of *L*-smooth functions is denoted by $C_L^{1,1}(D)$.
- When $D = \mathbb{E}$, the class is often denoted by $C_L^{1,1}$.
- The class of functions which are *L*-smooth for some $L \ge 0$ is denoted by $C^{1,1}$.
- ▶ If a function is L_1 -smooth, then it is also L_2 -smooth for any $L_2 \ge L_1$.

Examples:

- ▶ $f(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle + \mathbf{b}$, $\mathbf{a} \in \mathbb{E}$, $b \in \mathbb{R}$ (0-smooth).
- f(x) = ½x^TAx + b^Tx + c, A ∈ Sⁿ, b ∈ ℝⁿ and c ∈ ℝ (||A||_{p,q}-smooth if ℝⁿ is endowed with the l_p-norm).

•
$$f(\mathbf{x}) = \frac{1}{2}d_C^2 \ (f: \mathbb{E} \to \mathbb{R}) \ (1\text{-smooth})$$

Amir Beck

The Descent Lemma

Lemma. Let $f : \mathbb{E} \to (-\infty, \infty]$ be an *L*-smooth function $(L \ge 0)$ over a given convex set *D*. Then for any $\mathbf{x}, \mathbf{y} \in D$,

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \langle
abla f(\mathbf{x}), \mathbf{y} - \mathbf{x}
angle + rac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

Proof.

- By the fundamental theorem of calculus: $f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt.$
- ► $f(\mathbf{y}) f(\mathbf{x}) = \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} \mathbf{x})) \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle dt.$ ► Thus.

$$\begin{aligned} |f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle| &= \left| \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle dt \right| \\ &\stackrel{(*)}{\leq} \quad \int_0^1 \| \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \|_* \cdot \| \mathbf{y} - \mathbf{x} \| dt \\ &\leq \quad \int_0^1 tL \| \mathbf{y} - \mathbf{x} \|^2 dt = \frac{L}{2} \| \mathbf{y} - \mathbf{x} \|^2, \end{aligned}$$

Amir Beck

Characterizations of L-smoothness

Theorem. Let $f : \mathbb{E} \to \mathbb{R}$ be a convex function, differentiable over \mathbb{E} , and let L > 0. Then the following claims are equivalent:

(i)
$$f$$
 is L-smooth.
(ii) $f(\mathbf{y}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.
(iii) $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_*^2$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.
(iv) $\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \geq \frac{1}{L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_*^2$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.
(v) $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \geq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) - \frac{L}{2}\lambda(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^2$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{E}$ and $\lambda \in [0, 1]$.

L-Smoothness and Boundedness of the Hessian

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function over \mathbb{R}^n . Then for a given $L \ge 0$, the following two claims are equivalent: (i) f is L-smooth w.r.t. the l_p norm $(p \ge 1)$. (ii) $\|\nabla^2 f(\mathbf{x})\|_{p,q} \le L$ for any $\mathbf{x} \in \mathbb{R}^n$, where q satisfies $\frac{1}{p} + \frac{1}{q} = 1$. Corollary. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable convex

function over \mathbb{R}^n . Then f is L-smooth w.r.t. the l_2 -norm iff $\lambda_{\max}(\nabla^2 f(\mathbf{x})) \leq L$ for any $\mathbf{x} \in \mathbb{R}^n$.

Examples

- $f(\mathbf{x}) = \sqrt{1 + \|\mathbf{x}\|_2^2} \ (f : \mathbb{R}^n \to \mathbb{R}).$ 1-smooth w.r.t. to l_2 .
- ► $f(\mathbf{x}) = \log(e^{x_1} + e^{x_2} + \ldots + e^{x_n})$ $(f : \mathbb{R}^n \to \mathbb{R})$. 1-smooth w.r.t. l_2 and l_∞ -norms.

The Proximal Gradient Method (PGM)

The Proximal Gradient Method aims to solve the composite model:

(P) $\min\{F(\mathbf{x}) \equiv f(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}$

(A) $g: \mathbb{E} \to (-\infty, \infty]$ is proper closed and convex.

- (B) $f : \mathbb{E} \to (-\infty, \infty]$ is proper and closed; dom $(g) \subseteq int(dom(f))$ and f L_f -smooth over int(dom(f)).
- (C) The optimal set of problem (P) is nonempty and denoted by X^* . The optimal value of the problem is denoted by F_{opt} .

Three prototype examples:

- unconstrained smooth minimization $(g \equiv 0)$ $\min\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}$
- ► convex constrained smooth minimization (g = δ_C, C ≠ Ø closed convex) min{f(x) : x ∈ C}
- ► l_1 regularized problems ($\mathbb{E} = \mathbb{R}^n$, $g(x) \equiv \lambda ||x||_1$)

 $\min\{f(\mathbf{x}) + \lambda \|\mathbf{x}\|_1 : \mathbf{x} \in \mathbb{R}^n\}$

Amir Beck

Proximal-Based Methods

The Idea

Instead of minimizing directly

 $\min_{\mathbf{x}\in\mathbb{E}}f(\mathbf{x})+g(\mathbf{x})$

Approximate f by a regularized linear approximation of f while keeping g fixed.

$$\mathbf{x}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ f(\mathbf{x}^{k}) + \nabla f(\mathbf{x}^{k})^{T}(\mathbf{x} - \mathbf{x}^{k}) + \frac{1}{2t_{k}} \|\mathbf{x} - \mathbf{x}^{k}\|^{2} + g(\mathbf{x}) \right\}$$
$$\mathbf{x}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ g(\mathbf{x}) + \frac{1}{2t_{k}} \left\| \mathbf{x} - (\mathbf{x}^{k} - t_{k} \nabla f(\mathbf{x}^{k})) \right\|^{2} \right\}$$

Proximal Gradient Method

$$\mathbf{x}^{k+1} = \operatorname{prox}_{t_k g}(\mathbf{x}^k - t_k \nabla f(\mathbf{x}^k))$$

Three Prototype Examples Contd.

▶ **Gradient Method** (*g* = 0, unconstrained minimization)

$$\mathbf{x}^{k+1} = \mathbf{x}^k - t_k \nabla f(\mathbf{x}^k)$$

• Gradient Projection Method ($g = \delta_C$, constrained convex minimization)

$$\mathbf{x}^{k+1} = P_C(\mathbf{x}^k - t_k \nabla f(\mathbf{x}^k))$$

• Iterative Soft-Thresholding Algorithm (ISTA) $(g = \| \cdot \|_1)$:

$$\mathbf{x}^{k+1} = \mathcal{T}_{\lambda t_k} \left(\mathbf{x}^k - t_k
abla f(\mathbf{x}^k)
ight)$$

where $\mathcal{T}_{\alpha}(\mathbf{u}) = [|\mathbf{u}| - \alpha \mathbf{e}] \odot \operatorname{sgn}(\mathbf{u}).$

The Proximal Gradient Method

• We will take the stepsizes as $t_k = \frac{1}{L_k}$.

The Proximal Gradient Method

Initialization: pick $\mathbf{x}^0 \in int(dom(f))$. **General step:** for any k = 0, 1, 2, ... execute the following steps: (a) pick $L_k > 0$. (b) set $\mathbf{x}^{k+1} = prox_{\frac{1}{L_k}g} \left(\mathbf{x}^k - \frac{1}{L_k} \nabla f(\mathbf{x}^k) \right)$.

- The general update step can be written as $\mathbf{x}^{k+1} = T_{L_k}^{f,g}(\mathbf{x}^k)$
- ▶ $T_L^{f,g}$: int(dom(f)) $\rightarrow \mathbb{E}$ is the prox-grad operator defined by

$$T_L^{f,g}(\mathbf{x}) \equiv \operatorname{prox}_{\frac{1}{L}g}\left(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x})\right).$$

When the identities of f and g will be clear from the context, we will often omit the superscripts f, g and write T_L(·) instead of T^{f,g}_L(·).

Amir Beck

Sufficient Decrease Lemma

Lemma. Let F = f + g and $T_L \equiv T_L^{f,g}$. Then for any $\mathbf{x} \in int(dom(f))$ and $L \in \left(\frac{L_f}{2}, \infty\right)$ $F(\mathbf{x}) - F(T_L(\mathbf{x})) \ge \frac{L - \frac{L_f}{2}}{L^2} \left\| G_L^{f,g}(\mathbf{x}) \right\|^2$, (4)

where $G_L^{f,g}$: $int(dom(f)) \to \mathbb{E}$ is the operator defined by $G_L^{f,g}(\mathbf{x}) = L(\mathbf{x} - T_L(\mathbf{x}))$.

Proof. We use the shorthand notation $\mathbf{x}^+ = T_L(\mathbf{x})$.

• By the descent lemma $f(\mathbf{x}^{+}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{x}^{+} - \mathbf{x} \rangle + \frac{L_{f}}{2} \|\mathbf{x} - \mathbf{x}^{+}\|^{2}.$ (5)

• By the second prox theorem, since $\mathbf{x}^+ = \operatorname{prox}_{\frac{1}{L}g} \left(\mathbf{x} - \frac{1}{L} \nabla f(\mathbf{x}) \right)$,

$$\left\langle \mathbf{x} - \frac{1}{L} \nabla f(\mathbf{x}) - \mathbf{x}^+, \mathbf{x} - \mathbf{x}^+ \right\rangle \leq \frac{1}{L} g(\mathbf{x}) - \frac{1}{L} g(\mathbf{x}^+)$$

- ► Thus, $\langle \nabla f(\mathbf{x}), \mathbf{x}^+ \mathbf{x} \rangle \leq -L \|\mathbf{x}^+ \mathbf{x}\|^2 + g(\mathbf{x}) g(\mathbf{x}^+),$
- which combined with (5) yields

$$f(\mathbf{x}^+) + g(\mathbf{x}^+) \leq f(\mathbf{x}) + g(\mathbf{x}) + \left(-L + \frac{L_f}{2}\right) \left\|\mathbf{x}^+ - \mathbf{x}\right\|^2.$$

Amir Beck

The Gradient Mapping

▶ Definition. The gradient mapping is the operator $G_L^{f,g}$: $int(dom(f)) \rightarrow \mathbb{E}$ defined by

$$G_L^{f,g}(\mathbf{x}) \equiv L\left(\mathbf{x} - T_L^{f,g}(\mathbf{x})\right)$$

for any $\mathbf{x} \in int(dom(f))$.

When the identities of f and g will be clear from the context, we will use the notation G_L instead of G_L^{f,g}.

In the special case where $L = L_f$, the sufficient decrease lemma amounts to

Corollary. For any $\mathbf{x} \in int(dom(f))$:

$$F(\mathbf{x}) - F(T_{L_f}(\mathbf{x})) \geq rac{1}{2L_f} \left\| \mathcal{G}_{L_f}(\mathbf{x}) \right\|^2.$$

Properties of the Gradient Mapping I

Recall: under properties (A),(B), the stationary points of the problem

 $(P) \quad \min\{F(\mathbf{x}) \equiv f(\mathbf{x}) + g(\mathbf{x})\}\$

are the points satisfying $-\nabla f(\mathbf{x}) \in \partial g(\mathbf{x})$. Necessary optimality condition when f is nonconvex, and necessary and sufficient condition if f is convex.

Theorem Let f and g satisfy properties (A) and (B) and let L > 0. Then (a) $G_L^{f,g_0}(\mathbf{x}) = \nabla f(\mathbf{x})$ for any $\mathbf{x} \in int(dom(f))$, where $g_0(\mathbf{x}) \equiv 0$. (b) For $\mathbf{x}^* \in int(dom(f))$, $G_L^{f,g}(\mathbf{x}^*) = \mathbf{0}$ iff \mathbf{x}^* is a stationary point

Proof.

(a) $G_L^{f,g_0}(\mathbf{x}) = L\left(\mathbf{x} - \operatorname{prox}_{\frac{1}{L}g_0}\left(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x})\right)\right) = L\left(\mathbf{x} - \left(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x})\right)\right) = \nabla f(\mathbf{x}).$ (b) $G_L^{f,g}(\mathbf{x}^*) = \mathbf{0}$ iff $\mathbf{x}^* = \operatorname{prox}_{\frac{1}{T}g}\left(\mathbf{x}^* - \frac{1}{T}\nabla f(\mathbf{x}^*)\right)$. By the second prox theorem

$$\mathbf{x}^* - rac{1}{L}
abla f(\mathbf{x}^*) - \mathbf{x}^* \in rac{1}{L} \partial g(\mathbf{x}^*),$$

that is, iff $-\nabla f(\mathbf{x}^*) \in \partial g(\mathbf{x}^*)$.

Amir Beck
The Gradient Mapping as an Optimality Measure

Corollary Let f and g satisfy properties (A) and (B) and let L > 0. Suppose that in addition f is convex. Then for $\mathbf{x}^* \in \text{dom}(g)$, $G_L^{f,g}(\mathbf{x}^*) = \mathbf{0}$ if and only if \mathbf{x}^* is an optimal solution of problem (P).

► ||G_L(x)|| can be regarded as an "optimality measure" in the sense that it is always nonnegative, and equal to zero if and only if x is a stationary point (or optimal point if f is convex).

Properties of the Gradient Mapping II

▶ monotonicity w.r.t. the parameter. for any $\mathbf{x} \in int(dom(f))$ and $L_1 \ge L_2 > 0$,

$$\frac{\|G_{L_1}(\mathbf{x})\|}{L_1} \geq \|G_{L_2}(\mathbf{x})\|, \\ \frac{\|G_{L_1}(\mathbf{x})\|}{L_1} \leq \frac{\|G_{L_2}(\mathbf{x})\|}{L_2}.$$

• Lipschitz continuity. $\|G_L(\mathbf{x}) - G_L(\mathbf{y})\| \le (2L + L_f)\|\mathbf{x} - \mathbf{y}\|.$

If in addition f is convex and L_f -smooth (over the entire space)

- $\blacktriangleright \langle G_{L_f}(\mathbf{x}) G_{L_f}(\mathbf{y}), \mathbf{x} \mathbf{y} \rangle \geq \frac{3}{4L_f} \|G_{L_f}(\mathbf{x}) G_{L_f}(\mathbf{y})\|^2$
- $||G_{L_f}(\mathbf{x}) G_{L_f}(\mathbf{y})|| \le \frac{4L_f}{3} ||\mathbf{x} \mathbf{y}||$
- Monotonicity w.r.t. the prox-grad mapping: $\|G_{L_f}(T_{L_f}(\mathbf{x}))\| \le \|G_{L_f}(\mathbf{x})\|$.

Stepsize Strategies

- constant. $L_k = \overline{L} \in \left(\frac{L_f}{2}, \infty\right)$ for all k.
- ▶ backtracking procedure B1. The procedure requires three parameters (s, γ, η) where $s > 0, \gamma \in (0, 1)$ and $\eta > 1$. First, L_k is set to be equal to the initial guess s. Then, while

$$F(\mathbf{x}^k) - F(T_{L_k}(\mathbf{x}^k)) < \frac{\gamma}{L_k} \|G_{L_k}(\mathbf{x}^k)\|^2$$

we set $L_k := \eta L_k$. That is, L_k is chosen as $L_k = s \eta^{i_k}$, where i_k is the smallest nonnegative integer for which the condition

$$F(\mathbf{x}^k) - F(T_{s\eta^{i_k}}(\mathbf{x}^k)) \geq rac{\gamma}{s\eta^{i_k}} \|G_{s\eta^{i_k}}(\mathbf{x}^k)\|^2$$

is satisfied.

For the backtracking procedure it holds that $L_k \leq \max \left\{ s, \frac{\eta L_f}{2(1-\gamma)} \right\}$.

Amir Beck

Sufficient Decrease For Proximal Gradient

Lemma. Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by PGM. with either a constant stepsize defined by $L_k = \overline{L} \in \left(\frac{L_f}{2}, \infty\right)$ or with a stepsize chosen by the backtracking procedure B1. Then

$$F(\mathbf{x}^k) - F(\mathbf{x}^{k+1}) \ge M \|G_d(\mathbf{x}^k)\|^2,$$

where

$$M = \begin{cases} \frac{\bar{L} - \frac{L_f}{2}}{(\bar{L})^2} & \text{constant stepsize,} \\ \frac{\gamma}{\max\left\{s, \frac{\eta L_f}{2(1-\gamma)}\right\}} & \text{backtracking,} \end{cases} \quad d = \begin{cases} \bar{L}, & \text{constant stepsize,} \\ s, & \text{backtracking.} \end{cases}$$

Proof. The result for the constant stepsize setting follows by plugging $L = \overline{L}$ and $\mathbf{x} = \mathbf{x}^{k}$ in the sufficient decrease lemma. For the backtracking procedure we have

$$F(\mathbf{x}^k) - F(\mathbf{x}^{k+1}) \geq \frac{\gamma}{L_k} \|G_{L_k}(\mathbf{x}^k)\|^2 \geq \frac{\gamma}{\max\left\{s, \frac{\eta L_f}{2(1-\gamma)}\right\}} \|G_{L_k}(\mathbf{x}^k)\|^2 \geq \frac{\gamma}{\max\left\{s, \frac{\eta L_f}{2(1-\gamma)}\right\}} \|G_s(\mathbf{x}^k)\|^2,$$

Convergence of PGM - the Nonconvex Case

Theorem. Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by PGM with either a constant stepsize defined by $L_k = \overline{L} \in \left(\frac{L_f}{2}, \infty\right)$ or with a stepsize chosen by the backtracking procedure B1. Then

(a) The sequence {F(x^k)}_{k≥0} is nonincreasing. In addition, F(x^{k+1}) < F(x^k) if and only if x^k is not a stationary point of (P).
(b) G_d(x^k) → 0 as k → ∞.

(c)
$$\min_{n=0,1,\ldots,k} \|G_d(\mathbf{x}^n)\| \leq \frac{\sqrt{F(\mathbf{x}^0)-F_{opt}}}{\sqrt{M(k+1)}}.$$

(d) All limit points of the sequence {x^k}_{k≥0} are stationary points of problem (P).

The Fundamental Prox-Grad Inequality

Theorem. For any $\mathbf{x} \in \mathbb{E}$ and $\mathbf{y} \in \operatorname{int}(\operatorname{dom}(f))$ satisfying $f(T_L(\mathbf{y})) \leq f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), T_L(\mathbf{y}) - \mathbf{y} \rangle + \frac{L}{2} \|T_L(\mathbf{y}) - \mathbf{y}\|^2,$ (6)

it holds that $F(\mathbf{x}) - F(T_L(\mathbf{y})) \ge \frac{L}{2} \|\mathbf{x} - T_L(\mathbf{y})\|^2 - \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \ell_f(\mathbf{x}, \mathbf{y}), \quad (7)$ where $\ell_f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) - f(\mathbf{y}) - \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$

Proof.

- We use the notation $\mathbf{y}^+ = T_L(\mathbf{y})$.
- Since $\mathbf{y}^+ = \operatorname{prox}_{\frac{1}{r}g} (\mathbf{y} \frac{1}{L} \nabla f(\mathbf{y}))$, by the second prox theorem it follows that

$$\frac{1}{L}g(\mathbf{x}) \geq \frac{1}{L}g(\mathbf{y}^+) + \left\langle \mathbf{y} - \frac{1}{L}\nabla f(\mathbf{y}) - \mathbf{y}^+, \mathbf{x} - \mathbf{y}^+ \right\rangle.$$

Therefore,

$$g(\mathbf{x}) \geq g(\mathbf{y}^{+}) + L\langle \mathbf{y} - \mathbf{y}^{+}, \mathbf{x} - \mathbf{y}^{+} \rangle + \langle \nabla f(\mathbf{y}), \mathbf{y}^{+} - \mathbf{x} \rangle$$

= $g(\mathbf{y}^{+}) + L\langle \mathbf{y} - \mathbf{y}^{+}, \mathbf{x} - \mathbf{y}^{+} \rangle$
+ $\langle \nabla f(\mathbf{y}), \mathbf{y}^{+} - \mathbf{y} \rangle + \langle \nabla f(\mathbf{y}), \mathbf{y} - \mathbf{x} \rangle$ (8)

Amir Beck

Proof Contd.

- By (6), $f(\mathbf{y}^+) \leq f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{y}^+ \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{y}^+ \mathbf{y}\|^2$
- ► Hence, $\langle \nabla f(\mathbf{y}), \mathbf{y}^+ \mathbf{y} \rangle \ge f(\mathbf{y}^+) f(\mathbf{y}) \frac{L}{2} \|\mathbf{y}^+ \mathbf{y}\|^2$,
- which combined with (8) yields

$$F(\mathbf{x}) \geq F(\mathbf{y}^+) + L\langle \mathbf{y} - \mathbf{y}^+, \mathbf{x} - \mathbf{y}^+ \rangle - \frac{L}{2} \|\mathbf{y}^+ - \mathbf{y}\|^2 + \ell_f(\mathbf{x}, \mathbf{y}).$$

• Using the identity $\langle \mathbf{y} - \mathbf{y}^+, \mathbf{x} - \mathbf{y}^+ \rangle = \frac{1}{2} ||\mathbf{x} - \mathbf{y}^+||^2 + \frac{1}{2} ||\mathbf{y} - \mathbf{y}^+||^2 - \frac{1}{2} ||\mathbf{y} - \mathbf{x}||^2$, we obtain that

$$F(\mathbf{x}) - F(\mathbf{y}^+) \geq \frac{L}{2} \|\mathbf{x} - \mathbf{y}^+\|^2 - \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \ell_f(\mathbf{x}, \mathbf{y}),$$

Sufficient Decrease Lemma - 2nd Version

Corollary. For any $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$ for which $f(T_L(\mathbf{x})) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), T_L(\mathbf{x}) - \mathbf{x} \rangle + \frac{L}{2} \| T_L(\mathbf{x}) - \mathbf{x} \|^2,$ it holds that $F(\mathbf{x}) - F(T_L(\mathbf{x})) \geq \frac{1}{2L} \| G_L(\mathbf{x}) \|^2.$

Stepsize Strategies in the Convex Case

When f is also convex, we will define two possible stepsize strategies for which

$$f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{L_k}{2} \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2.$$

• constant. $L_k = L_f$ for all k.

▶ backtracking procedure B2. The procedure requires two parameters (s, η) , where s > 0 and $\eta > 1$. Define $L_{-1} = s$. At iteration k, L_k is set to be equal to L_{k-1} . Then, while

$$f(T_{L_k}(\mathbf{x}^k)) > f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), T_{L_k}(\mathbf{x}^k) - \mathbf{x}^k \rangle + \frac{L_k}{2} \|T_{L_k}(\mathbf{x}^k) - \mathbf{x}^k\|^2,$$

we set $L_k := \eta L_k$. That is, L_k is chosen as $L_k = L_{k-1}\eta^{i_k}$, where i_k is the smallest nonnegative integer for which

$$f(T_{L_{k-1}\eta^{i_k}}(\mathbf{x}^k)) \leq f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), T_{L_{k-1}\eta^{i_k}}(\mathbf{x}^k) - \mathbf{x}^k \rangle + \frac{L_k}{2} \|T_{L_{k-1}\eta^{i_k}}(\mathbf{x}^k) - \mathbf{x}^k\|^2.$$

Remarks

• $\beta L_f \leq L_k \leq \alpha L_f$, where

$$\alpha = \left\{ \begin{array}{cc} 1, & \text{constant}, \\ \max\left\{\eta, \frac{s}{L_f}\right\}, & \text{backtracking}, \end{array} \right. \beta = \left\{ \begin{array}{cc} 1, & \text{constant}, \\ \frac{s}{L_f}, & \text{backtracking}. \end{array} \right.$$

Monotonicity of PGM. Invoking the sufficient decrease lemma (2nd version) with x = x^k, we obtain that

$$F(\mathbf{x}^k) - F(\mathbf{x}^{k+1}) \geq \frac{L_k}{2} \|\mathbf{x}^k - \mathbf{x}^{k+1}\|^2.$$

or

$$F(\mathbf{x}^k) - F(\mathbf{x}^{k+1}) \geq rac{1}{2L_k} \|G_{L_k}(\mathbf{x}^k)\|^2.$$

O(1/k) Rate of Convergence of Proximal Gradient

Theorem. Suppose that f is convex. Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method with either a constant stepsize rule or the backtracking procedure B2. Then for any $\mathbf{x}^* \in X^*$ and $k \geq 0$,

$$F(\mathbf{x}^k) - F_{ ext{opt}} \leq rac{lpha L_f \|\mathbf{x}^0 - \mathbf{x}^*\|^2}{2k},$$

where $\alpha = 1$ in the constant stepsize setting and $\alpha = \max\left\{\eta, \frac{s}{L_f}\right\}$ if the backtracking rule is employed.

Proof.

Substituting $L = L_n$, $\mathbf{x} = \mathbf{x}^*$ and $\mathbf{y} = \mathbf{x}^n$ in the fundamental prox-grad ineq.,

$$\frac{2}{L_n}(F(\mathbf{x}^*) - F(\mathbf{x}^{n+1})) \geq \|\mathbf{x}^* - \mathbf{x}^{n+1}\|^2 - \|\mathbf{x}^* - \mathbf{x}^n\|^2 + \frac{2}{L_n}\ell_f(\mathbf{x}^*, \mathbf{x}^n)$$
$$\geq \|\mathbf{x}^* - \mathbf{x}^{n+1}\|^2 - \|\mathbf{x}^* - \mathbf{x}^n\|^2,$$

Proof Contd.

• Summing over n = 0, 1, ..., k - 1 and using the bound $L_n \leq \alpha L_f$, we obtain

$$\frac{2}{\alpha L_f} \sum_{n=0}^{k-1} (F(\mathbf{x}^*) - F(\mathbf{x}^{n+1})) \ge \|\mathbf{x}^* - \mathbf{x}^k\|^2 - \|\mathbf{x}^* - \mathbf{x}^0\|^2.$$

► $\sum_{n=0}^{k-1} (F(\mathbf{x}^{n+1}) - F_{opt}) \le \frac{\alpha L_f}{2} \|\mathbf{x}^* - \mathbf{x}^0\|^2 - \frac{\alpha L_f}{2} \|\mathbf{x}^* - \mathbf{x}^k\|^2 \le \frac{\alpha L_f}{2} \|\mathbf{x}^* - \mathbf{x}^0\|^2.$ ► By the monotonicity of $\{F(\mathbf{x}^n)\}_{n\ge 0}$,

$$k(F(\mathbf{x}^k) - F_{\text{opt}}) \leq \sum_{n=0}^{k-1} (F(\mathbf{x}^{n+1}) - F_{\text{opt}}) \leq \frac{\alpha L_f}{2} \|\mathbf{x}^* - \mathbf{x}^0\|^2.$$

• Consequently,
$$F(\mathbf{x}^k) - F_{opt} \leq \frac{\alpha L_f \|\mathbf{x}^* - \mathbf{x}^0\|^2}{2k}$$
.

Fejér Monotonicity

Theorem. Suppose that f is convex. Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method with either a constant stepsize rule or the backtracking procedure B2. Then for any $\mathbf{x}^* \in X^*$ and $k \geq 0$,

 $\|\mathbf{x}^{k+1} - \mathbf{x}^*\| \le \|\mathbf{x}^k - \mathbf{x}^*\|.$

Proof.

Substituting L = L_k, x = x[∗] and y = x^k in the fundamental prox-grad inequality (7),

$$\begin{aligned} \frac{2}{L_k}(F(\mathbf{x}^*) - F(\mathbf{x}^{k+1})) &\geq \|\mathbf{x}^* - \mathbf{x}^{k+1}\|^2 - \|\mathbf{x}^* - \mathbf{x}^k\|^2 + \frac{2}{L_k}\ell_f(\mathbf{x}^*, \mathbf{x}^k) \\ &\geq \|\mathbf{x}^* - \mathbf{x}^{k+1}\|^2 - \|\mathbf{x}^* - \mathbf{x}^k\|^2, \end{aligned}$$

• The result follows by the inequality $F(\mathbf{x}^*) - F(\mathbf{x}^{k+1}) \leq 0$.

Amir Beck

Proximal-Based Methods

Fejér Monotonicity - Definition and Main Result

▶ Definition. A sequence $\{\mathbf{x}^k\}_{k\geq 0} \subseteq \mathbb{E}$ is called Fejér monotone w.r.t. a set $S \subseteq \mathbb{E}$ if $\|\mathbf{x}^{k+1} - \mathbf{y}\| \le \|\mathbf{x}^k - \mathbf{y}\|$ for all $k \ge 0$ and $\mathbf{y} \in S$.

Theorem (convergence of Fejér monotone sequences). Let $\{\mathbf{x}^k\}_{k\geq 0} \subseteq \mathbb{E}$ be asequence, and let S be a set satisfying $D \subseteq S$, where D is the set comprising all the limit points of $\{\mathbf{x}^k\}_{k\geq 0}$. If $\{\mathbf{x}^k\}_{k\geq 0}$ is Fejér monotone w.r.t. S, then it converges to a point in D.

Consequence: convergence of the sequence generated by PGM.

Theorem. Suppose that f is convex. Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by PGM with either a constant stepsize rule or the backtracking procedure B2. Then the sequence $\{\mathbf{x}^k\}_{k\geq 0}$ converges to an optimal solution of problem (P).

Iteration Complexity of Algorithms

- ► An ε -optimal solution of problem (P) is a vector $\bar{\mathbf{x}} \in \text{dom}(g)$ satisfying $F(\bar{\mathbf{x}}) F_{\text{opt}} \leq \varepsilon$.
- In complexity analysis, the following question is asked: how many iterations are required to obtain an ε-optimal solution? meaning how many iterations are required to obtain the condition F(x^k) − F_{opt} ≤ ε

• Recall:
$$F(\mathbf{x}^k) - F_{opt} \leq \frac{\alpha L_f \|\mathbf{x}^0 - \mathbf{x}^*\|^2}{2k}$$
.

Theorem[$O(1/\varepsilon)$ complexity of PGM]. For any k satisfying

$$k \ge \left\lceil \frac{\alpha L_f R^2}{2\varepsilon} \right\rceil$$

it holds that $F(\mathbf{x}^k) - F_{opt} \leq \varepsilon$, where R is an upper bound on $\|\mathbf{x}^* - \mathbf{x}^0\|$ for some $\mathbf{x}^* \in X^*$.

O(1/k) Rate of Convergence of the Gradient Mapping Norm in the Convex Case

Recall: $\min_{n=0,1,\dots,k} \|G_d(\mathbf{x}^n)\| \le \frac{\sqrt{F(\mathbf{x}^0) - F_{opt}}}{\sqrt{M(k+1)}}$. We can do better if f is convex:

Theorem. Suppose that f is convex. Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by PGM with either a constant stepsize by the backtracking procedure B2. Then for any $\mathbf{x}^* \in X^*$ and $k \geq 0$,

$$\min_{k=0,1,...,k} \| extsf{G}_{lpha L_f}(\mathbf{x}^n) \| \leq rac{2lpha^{1.5} extsf{L}_f \| \mathbf{x}^0 - \mathbf{x}^* \|}{\sqrt{eta}(k+1)}.$$

where $\alpha = \beta = 1$ in the constant stepsize setting and $\alpha = \max\left\{\eta, \frac{s}{L_f}\right\}, \beta = \frac{s}{L_f}$ if the backtracking rule is employed.

And even better if a constant stepsize is used: $||G_{L_f}(\mathbf{x}^k)|| \leq \frac{2L_f ||\mathbf{x}^0 - \mathbf{x}^*||}{k+1}$.

Linear Rate of Convergence of PGM – Strongly Convex Case

Theorem. Suppose that f is σ -strongly convex ($\sigma > 0$). Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method with either a constant stepsize rule or backtracking procedure B2. Let

$$\alpha = \left\{ \begin{array}{ll} 1, & \text{constant stepsize,} \\ \max\left\{\eta, \frac{s}{L_f}\right\}, & \text{backtracking.} \end{array} \right.$$

Then for any
$$\mathbf{x}^* \in X$$
 and $k \ge 0$,
(a) $\|\mathbf{x}^{k+1} - \mathbf{x}^*\|^2 \le \left(1 - \frac{\sigma}{\alpha L_f}\right) \|\mathbf{x}^k - \mathbf{x}^*\|^2$.
(b) $\|\mathbf{x}^k - \mathbf{x}^*\|^2 \le \left(1 - \frac{\sigma}{\alpha L_f}\right)^k \|\mathbf{x}^0 - \mathbf{x}^*\|^2$.
(c) $F(\mathbf{x}^{k+1}) - F_{\text{opt}} \le \frac{\alpha L_f}{2} \left(1 - \frac{\sigma}{\alpha L_f}\right)^{k+1} \|\mathbf{x}^0 - \mathbf{x}^*\|^2$.

Complexity of PGM - the Strongly Convex Case

A direct result of the rate analysis:

Theorem. For any $k \ge 1$ satisfying $k \ge \alpha \kappa \log\left(\frac{1}{\varepsilon}\right) + \alpha \kappa \log\left(\frac{\alpha L_f R^2}{2}\right)$, it holds that $F(\mathbf{x}^k) - F_{opt} \le \varepsilon$, where R is an upper bound on $\|\mathbf{x}^0 - \mathbf{x}^*\|$ and $\kappa = \frac{L_f}{\sigma}$.

Non-Euclidean Spaces

- ▶ Until now we assumed that the underlying space is Euclidean, meaning that $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$.
- What is the effect of considering a different norm?
- What is the role of the dual space?
- ▶ We will concentrate the simplest example: the gradient method.

The Dual Space

- A linear functional on a vector space \mathbb{E} is a linear transformation from \mathbb{E} to \mathbb{R} .
- The dual space \mathbb{E}^* is the set of all linear functionals on \mathbb{E} .
- ▶ Fact: For inner product spaces, for any linear functional $f \in \mathbb{E}^*$, there exists $\mathbf{v} \in \mathbb{E}$ such that

$$f(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle.$$

- We will make the association $f(\cdot) = \langle \mathbf{v}, \cdot \rangle \in \mathbb{E}^* \leftrightarrow \mathbf{v} \in \mathbb{E}$.
- Convention: the elements in \mathbb{E}^* are the same as in \mathbb{E} .
- The inner product in \mathbb{E}^* is the same as in \mathbb{E} .
- Essentially, the only difference is the norm of the dual space:

$$\|\mathbf{y}\|_*\equiv \max_{\mathbf{x}}\{\langle \mathbf{y},\mathbf{x}
angle:\|\mathbf{x}\|\leq 1\},\quad \mathbf{y}\in\mathbb{E}^*.$$

Alternative representation:

$$\|\mathbf{y}\|_* = \max_{\mathbf{x}} \{ \langle \mathbf{y}, \mathbf{x} \rangle : \|\mathbf{x}\| = 1 \}, \quad \mathbf{y} \in \mathbb{E}^*.$$

Subgradients and gradients are always in the dual space.

Gradient Method Revisited

Consider the unconstrained problem

 $\min\{f(\mathbf{x}):\mathbf{x}\in\mathbb{E}\},\$

where we assume that f is L_f -smooth w.r.t. the underlying norm:

 $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_* \leq L_f \|\mathbf{x} - \mathbf{y}\|.$

The gradient method has the form

$$\mathbf{x}^{k+1} = \mathbf{x}^k - t_k \nabla f(\mathbf{x}^k).$$

- ▶ A "philosophical" flaw: $\mathbf{x}^k \in \mathbb{E}$ while $\nabla f(\mathbf{x}^k) \in \mathbb{E}^*$.
- ▶ Solution: consider the "primal counterpart" of $\nabla f(\mathbf{x}^k) \in \mathbb{E}^*$.

The Primal Counterpart

▶ Definition. For any vector $\mathbf{a} \in \mathbb{E}^*$, the set of primal counterparts of \mathbf{a} is

$$\Lambda_{\mathbf{a}} = \underset{\mathbf{v} \in \mathbb{E}}{\operatorname{argmax}} \{ \langle \mathbf{a}, \mathbf{v} \rangle : \|\mathbf{v}\| \leq 1 \}.$$

Lemma [basic properties of primal counterparts] Let $\mathbf{a} \in \mathbb{E}^*$. Then (a) If $\mathbf{a} \neq \mathbf{0}$, then $\|\mathbf{a}^{\dagger}\| = 1$ for any $\mathbf{a}^{\dagger} \in \Lambda_{\mathbf{a}}$. (b) If $\mathbf{a} = \mathbf{0}$, then $\Lambda_{\mathbf{a}} = B_{\parallel,\parallel}[\mathbf{0}, 1]$. (c) $\langle \mathbf{a}, \mathbf{a}^{\dagger} \rangle = \|\mathbf{a}\|_{*}$ for any $\mathbf{a}^{\dagger} \in \Lambda_{\mathbf{a}}$. **Examples:** $\mathbb{E} = \mathbb{R}^n$, $a \neq 0$, $||\cdot|| = ||\cdot||_2 \Lambda_{\mathbf{a}} = \left\{ \frac{\mathbf{a}}{\|\mathbf{a}\|_2} \right\}.$ $\blacktriangleright \|\cdot\| = \|\cdot\|_1, \Lambda_{\mathbf{a}} = \left\{ \sum_{i \in I(\mathbf{a})} \lambda_i \operatorname{sgn}(a_i) \mathbf{e}_i : \sum_{i \in I(\mathbf{a})} \lambda_i = 1, \lambda_j \ge 0, j \in I(\mathbf{a}) \right\},\$ where $I(\mathbf{a}) = \operatorname{argmax} |a_i|$. i=12 n ▶ $\|\cdot\| = \|\cdot\|_{\infty}$. $\Lambda_{\mathbf{a}} = \{\mathbf{z} \in \mathbb{R}^{n} : z_{i} = \operatorname{sgn}(a_{i}), i \in I_{\neq}(\mathbf{a}), |z_{i}| \leq 1, j \in I_{0}(\mathbf{a})\},\$ where $I_{\neq}(\mathbf{a}) = \{i \in \{1, 2, \dots, n\} : a_i \neq 0\}, I_0(\mathbf{a}) = \{i \in \{1, 2, \dots, n\} : a_i = 0\}.$

Amir Beck

Proximal-Based Methods

The Non-Euclidean Gradient Method

The Non-Euclidean Gradient Method

Initialization: pick $\mathbf{x}^0 \in \mathbb{E}$ arbitrarily. **General step:** for any k = 0, 1, 2, ... execute the following steps: (a) pick $\nabla f(\mathbf{x}^k)^{\dagger} \in \Lambda_{\nabla f(\mathbf{x}^k)}$; (b) set $\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\|\nabla f(\mathbf{x}^k)\|_*}{l_k} \nabla f(\mathbf{x}^k)^{\dagger}$.

- Convergence analysis relies on the descent lemma: $f(\mathbf{y}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L_f}{2} \|\mathbf{x} - \mathbf{y}\|^2.$
- ▶ Sufficient Decrease: $f(\mathbf{x}^k) f(\bar{\mathbf{x}}^{k+1}) \ge \frac{1}{2L_f} \|\nabla f(\mathbf{x}^k)\|_*^2$.
- Proof of sufficient decrease:

$$\begin{aligned} f(\mathbf{x}^{k+1}) &\leq f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{L_f}{2} \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2 \\ &= f(\mathbf{x}^k) - \frac{\|\nabla f(\mathbf{x}^k)\|_*}{L_f} \langle \nabla f(\mathbf{x}^k), \nabla f(\mathbf{x}^k)^{\dagger} \rangle + \frac{\|\nabla f(\mathbf{x}^k)\|_*^2}{2L_f^2} \\ &= f(\mathbf{x}^k) - \frac{1}{2L_f} \|\nabla f(\mathbf{x}^k)\|_*^2, \end{aligned}$$

Amir Beck

Convergence in the Nonconvex Case

Theorem. Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by the non-Euclidean gradient method. Then

- (a) the sequence $\{f(\mathbf{x}^k)\}_{k\geq 0}$ is nonincreasing. In addition, $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$ iff $\nabla f(\mathbf{x}^k) \neq \mathbf{0}$;
- (b) if the sequence $\{f(\mathbf{x}^k)\}_{k\geq 0}$ is bounded below, then $\nabla f(\mathbf{x}^k) \to \mathbf{0}$ as $k \to \infty$;

(c) if the optimal value is finite and equal to f_{opt} , then $\min_{n=0,1,...,k} \|\nabla f(\mathbf{x}^n)\|_* \leq \frac{\sqrt{2L_f}\sqrt{f(\mathbf{x}^0) - f_{\text{opt}}}}{\sqrt{k+1}}.$

(d) all limit points of the sequence $\{\mathbf{x}^k\}_{k\geq 0}$ are stationary points of f.

Proof. (a),(b) and (d) follow immediately from the sufficient decrease property. (c) follows by summing the sufficient decrease property

$$\begin{aligned} f(\mathbf{x}^{0}) - f_{\text{opt}} &\geq f(\mathbf{x}^{0}) - f(\mathbf{x}^{k+1}) = \sum_{n=0}^{k} (f(\mathbf{x}^{n}) - f(\mathbf{x}^{n+1})) \\ &\geq \frac{1}{2L_{f}} \sum_{n=0}^{k} \|\nabla f(\mathbf{x}^{n})\|_{*}^{2} \geq \frac{k+1}{2L_{f}} \min_{n} \|\nabla f(\mathbf{x}^{n})\|_{*}^{2} \end{aligned}$$

Amir Beck

Proximal-Based Methods

Convergence in the Convex Case

Assumptions:

- $f : \mathbb{E} \to \mathbb{R}$ is L_f -smooth and convex.
- The optimal set is nonempty and denoted by X*. The optimal value is denoted by f_{opt}.
- ▶ There exists R > 0 s.t. $\max_{\mathbf{x},\mathbf{x}^*} \{ \|\mathbf{x}^* \mathbf{x}\| : f(\mathbf{x}) \le f(\mathbf{x}^0), \mathbf{x}^* \in X^* \} \le R$.

Lemma. $f(\mathbf{x}^{k}) - f(\mathbf{x}^{k+1}) \ge \frac{1}{2L_{f}R^{2}}(f(\mathbf{x}^{k}) - f_{opt})^{2}$

Proof.

By the gradient inequality,

 $f(\mathbf{x}^k) - f_{\text{opt}} = f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \langle \nabla f(\mathbf{x}^k), \mathbf{x}^k - \mathbf{x}^* \rangle \le \|\nabla f(\mathbf{x}^k)\|_* \|\mathbf{x}^k - \mathbf{x}^*\| \le R \|\nabla f(\mathbf{x}^k)\|_*.$

• Combining the above with sufficient decrease property, $f(\mathbf{x}^k) - f(\mathbf{x}^{k+1}) \ge \frac{1}{2L_f} \|\nabla f(\mathbf{x}^k)\|_*^2$, the result follows.

O(1/k) rate of convergence of the non-Euclidean gradient method

For any
$$k \geq 1$$
, $f(\mathbf{x}^k) - f_{\mathrm{opt}} \leq rac{2L_{\mathrm{f}}R^2}{k}$

Proof.

- Define $a_k = f(\mathbf{x}^k) f_{opt}$
- Then by previous lemma,

$$a_k-a_{k+1}\geq \frac{1}{C}a_k^2,$$

where $C = 2L_f R^2$.

• We can thus deduce (why?) that $a_k \leq \frac{C}{k}$.

Non-Euclidean Gradient under the I_1 -Norm

- ▶ \mathbb{R}^n endowed with the I_1 -norm.
- f be an L_f -smooth function w.r.t. the l_1 -norm.

```
Non-Euclidean Gradient under the l₁-Norm
Initialization: pick x<sup>0</sup> ∈ ℝ<sup>n</sup>.
General step: for any k = 0, 1, 2, ... execute the following steps:
set i<sub>k</sub> ∈ argmax | ∂f(x<sup>k</sup>) | / ∂x<sub>i</sub> |;
x<sup>k+1</sup> = x<sup>k</sup> - ||∇f(x<sup>k</sup>)||∞ / L<sub>f</sub> sgn (∂f(x<sup>k</sup>))/∂x<sub>ik</sub>) e<sub>ik</sub>.
```

Coordinate descent-type method

Example

Consider the problem

$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}+\mathbf{b}^{\mathsf{T}}\mathbf{x}\right\},\$$

▶
$$\mathbf{A} \in \mathbb{S}_{++}^n$$
 and $\mathbf{b} \in \mathbb{R}^n$.

- ▶ The underlying space is $\mathbb{E} = \mathbb{R}^n$ endowed with the I_p -norm $(p \in [1, \infty])$.
- f is $L_f^{(p)}$ -smooth with

$$L_{f}^{(p)} = \|\mathbf{A}\|_{p,q} = \max_{\mathbf{x}} \{\|\mathbf{A}\mathbf{x}\|_{q} : \|\mathbf{x}\|_{p} \le 1\}$$

with $q \in [1, \infty]$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$. Two settings:

p = 2. In this case, since A is positive definite, L⁽²⁾_f = ||A||_{2,2} = λ_{max}(A).
 p = 1. Here L⁽¹⁾_f = ||A||_{1,∞} = max_{i,j} |A_{i,j}|.

Two Algorithms Euclidean (p = 2):

Algorithm G2

- ▶ Initialization: pick $\mathbf{x}^0 \in \mathbb{R}^n$.
- General step $(k \ge 0)$: $\mathbf{x}^{k+1} = \mathbf{x}^k \frac{1}{L^{(2)}}(\mathbf{A}\mathbf{x}^k + \mathbf{b})$.

Non-Euclidean (p = 1)

Algorithm G1 • Initialization: pick $\mathbf{x}^0 \in \mathbb{R}^n$. • General step $(k \ge 0)$: • pick $i_k \in \underset{i=1,2,...,n}{\operatorname{argmax}} |\mathbf{A}_i \mathbf{x}^k + b_i|$, where \mathbf{A}_i denotes *i*th row of \mathbf{A} . • update $\mathbf{x}_j^{k+1} = \begin{cases} \mathbf{x}_j^k, & j \ne i_k, \\ \mathbf{x}_{i_k}^k - \frac{1}{L_f^{(1)}} (\mathbf{A}_{i_k} \mathbf{x}^k + b_{i_k}), & j = i_k. \end{cases}$

• Algorithm G2 requires $O(n^2)$ operations per iteration, while algorithm G1 requires only O(n).

Amir Beck

Proximal-Based Methods

Example Contd.

- Set $\mathbf{A} = \mathbf{J} + 2\mathbf{I}$, where \mathbf{J} is the matrix of all-ones.
- A is positive definite and $\lambda_{\max}(\mathbf{A}) = 2 + n$, $\max_{i,j} |A_{i,j}| = 3$.
- Therefore, as $\rho_f \equiv \frac{L_f^{(2)}}{L_f^{(1)}} = \frac{n+2}{3}$ gets larger, the Euclidean gradient method (Algorithm G2) should become more inferior to the non-Euclidean version (Algorithm G1).

Numerical Example:

- ▶ $\mathbf{b} = 10\mathbf{e}_1, \mathbf{x}^0 = \mathbf{e}_n$.
- $n = 10/100(\rho_f = 4/34)$
- ▶ We count both iterations and "meta iterations" of G1.

n = 10

n = 100

Fast Proximal Gradient

- ► A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. (2009).
- ► A. Beck and M. Teboulle, *Gradient-based algorithms with applications to signal-recovery problems*, In Convex optimization in signal processing and communications (2010)
- Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program. (2013)

FISTA (Fast Proximal Gradient Method)

• The model:

 $(P) \min_{\mathbf{x} \in \mathbb{E}} f(\mathbf{x}) + g(\mathbf{x})$

• Underlying Assumptions:

- (A) $g: \mathbb{E} \to (-\infty, \infty]$ is proper closed and convex.
- (B) $f : \mathbb{E} \to \mathbb{R}$ is L_f -smooth and convex.
- (C) The optimal set of (P) is nonempty and denoted by X^* . The optimal value of the problem is denoted by F_{opt} .
- The Idea: instead of making a step of the form

$$\mathbf{x}^{k+1} = \operatorname{prox}_{\frac{1}{L_k}g}\left(\mathbf{x}^k - \frac{1}{L_k}\nabla f(\mathbf{x}^k)\right)$$

we will consider a step of the form

$$\mathbf{x}^{k+1} = \operatorname{prox}_{\frac{1}{L_k}g}\left(\mathbf{y}^k - \frac{1}{L_k}\nabla f(\mathbf{y}^k)\right)$$

where \mathbf{y}^k is a special linear combination of $\mathbf{x}^k, \mathbf{x}^{k-1}$

Amir Beck

FISTA

FISTA

Input: (f, g, \mathbf{x}^0) , where f and g satisfy properties (A) and (B) and $\mathbf{x}^0 \in \mathbb{E}$. Initialization: set $\mathbf{y}^0 = \mathbf{x}^0$ and $t_0 = 1$. General step: for any k = 0, 1, 2, ... execute the following steps: (a) pick $L_k > 0$. (b) set $\mathbf{x}^{k+1} = \operatorname{prox}_{\frac{1}{L_k}g} \left(\mathbf{y}^k - \frac{1}{L_k} \nabla f(\mathbf{y}^k) \right)$. (c) set $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$. (d) compute $\mathbf{y}^{k+1} = \mathbf{x}^{k+1} + \left(\frac{t_k - 1}{t_{k+1}} \right) (\mathbf{x}^{k+1} - \mathbf{x}^k)$.

The dominant computational steps of the proximal gradient and FISTA methods are the same: one proximal computation and one gradient evaluation.

Stepsize Rules

• constant. $L_k = L_f$ for all k.

▶ backtracking procedure B3. The procedure requires two parameters (s, η) , where s > 0 and $\eta > 1$. Define $L_{-1} = s$. At iteration k, L_k is set to be equal to L_{k-1} . Then, while

$$f(T_{L_k}(\mathbf{y}^k)) > f(\mathbf{y}^k) + \langle
abla f(\mathbf{y}^k), T_{L_k}(\mathbf{y}^k) - \mathbf{y}^k
angle + rac{L_k}{2} \|T_{L_k}(\mathbf{y}^k) - \mathbf{y}^k\|^2,$$

we set $L_k := \eta L_k$. In other words, the stepsize is chosen as $L_k = L_{k-1}\eta^{i_k}$, where i_k is the smallest nonnegative integer for which

In both stepsize rules,

$$f(\mathcal{T}_{L_k}(\mathbf{y}^k)) \leq f(\mathbf{y}^k) + \langle
abla f(\mathbf{y}^k), \mathcal{T}_{L_k}(\mathbf{y}^k) - \mathbf{y}^k
angle + rac{L_k}{2} \|\mathcal{T}_{L_k}(\mathbf{y}^k) - \mathbf{y}^k\|^2.$$

Amir Beck
Remarks

- $\begin{array}{l} \flat \ \beta L_f \leq L_k \leq \alpha L_f, \ \text{where} \\ \\ \alpha = \left\{ \begin{array}{cc} 1, & \text{constant}, \\ \max\left\{\eta, \frac{s}{L_f}\right\}, & \text{backtracking}, \end{array} \right. \beta = \left\{ \begin{array}{cc} 1, & \text{constant}, \\ \frac{s}{L_f}, & \text{backtracking}. \end{array} \right. \end{array}$
- Easy to show by induction that $t_k \ge \frac{k+2}{2}$ for all $k \ge 0$.

$O(1/k^2)$ rate of convergence of FISTA

Theorem. Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by FISTA with either a constant stepsize rule or the backtracking procedure B3. Then for any $\mathbf{x}^* \in X^*$ and $k \geq 1$,

$$\mathcal{F}(\mathbf{x}^k) - \mathcal{F}_{ ext{opt}} \leq rac{2lpha L_f \|\mathbf{x}^0 - \mathbf{x}^*\|^2}{(k+1)^2},$$

where $\alpha = 1$ in the constant stepsize setting and $\alpha = \max\left\{\eta, \frac{s}{L_f}\right\}$ if the backtracking rule is employed.

Proof heavily based on the fundamental proximal gradient inequality.

Alternative Choice for t_k

- For the proof of the O(1/k²) rate, it is enough to require that {t_k}_{k≥0} will satisfy
 - (a) $t_k \ge \frac{k+2}{2}$; (b) $t_{k+1}^2 - t_{k+1} \le t_k^2$.
- The choice $t_k = \frac{k+2}{2}$ also satisfies these two properties. (a) is obvious. (b) holds since

$$\begin{aligned} t_{k+1}^2 - t_{k+1} &= t_{k+1}(t_{k+1} - 1) = \frac{k+3}{2} \cdot \frac{k+1}{2} = \frac{k^2 + 4k + 3}{4} \\ &\leq \frac{k^2 + 4k + 4}{4} = \frac{(k+2)^2}{4} = t_k^2. \end{aligned}$$

Consider the model

 $\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_1,$

 $\blacktriangleright \ \lambda > 0$

• $f : \mathbb{R}^n \to \mathbb{R}$ convex and L_f -smooth.

Iterative Shrinkage/Thresholding Algorithm (ISTA):

$$\mathbf{x}^{k+1} = \mathcal{T}_{\lambda/L_f}\left(\mathbf{x}^k - \frac{1}{L_f}
abla f(\mathbf{x}^k)
ight).$$

Fast Iterative Shrinkage/Thresholding Algorithm (ISTA):

(a)
$$\mathbf{x}^{k+1} = \mathcal{T}_{\frac{\lambda}{L_f}} \left(\mathbf{y}^k - \frac{1}{L_f} \nabla f(\mathbf{y}^k) \right).$$

(b) $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}.$
(c) $\mathbf{y}^{k+1} = \mathbf{x}^{k+1} + \left(\frac{t_k - 1}{t_{k+1}} \right) (\mathbf{x}^{k+1} - \mathbf{x}^k).$

Amir Beck

*I*₁-Regularized Least Squares

Consider the problem

$$\min_{\mathbf{x}\in\mathbb{R}^n}\frac{1}{2}\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_2^2+\lambda\|\mathbf{x}\|_1,$$

•
$$\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$$
 and $\lambda > 0$.

- Fits (P) with $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$ and $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$.
- f is L_f -smooth with $L_f = \|\mathbf{A}^T \mathbf{A}\|_{2,2} = \lambda_{\max}(\mathbf{A}^T \mathbf{A}).$

ISTA:
$$\mathbf{x}^{k+1} = \mathcal{T}_{\frac{\lambda}{L_k}} \left(\mathbf{x}^k - \frac{1}{L_k} \mathbf{A}^T (\mathbf{A} \mathbf{x}^k - \mathbf{b}) \right).$$

FISTA:
(a) $\mathbf{x}^{k+1} = \mathcal{T}_{\frac{\lambda}{L_k}} \left(\mathbf{y}^k - \frac{1}{L_k} \mathbf{A}^T (\mathbf{A} \mathbf{y}^k - \mathbf{b}) \right).$
(b) $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}.$
(c) $\mathbf{y}^{k+1} = \mathbf{x}^{k+1} + \left(\frac{t_k - 1}{t_{k+1}} \right) (\mathbf{x}^{k+1} - \mathbf{x}^k).$

Numerical Example I

- ▶ test on regularized *l*₁-regularized least squares.
- $\blacktriangleright \ \lambda = 1.$
- ▶ $A \in \mathbb{R}^{100 \times 110}$. The components of A were independently generated using a standard normal distribution.
- the "true" vector is $\mathbf{x}_{true} = \mathbf{e}_3 \mathbf{e}_7$.
- $\blacktriangleright \mathbf{b} = \mathbf{A}\mathbf{x}_{\mathrm{true}}.$
- > ran 200 iterations of ISTA and FISTA with $\mathbf{x}^0 = \mathbf{e}$.

Function Values

Solutions

Example 2: Wavelet-Based Image Deblurring

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|_1$$

- ▶ image of size 512x512
- matrix A is dense (Gaussian blurring times inverse of two-stage Haar wavelet transform).
- all problems solved with fixed λ and Gaussian noise.

Deblurring of the Cameraman

original

blurred and noisy

1000 Iterations of ISTA versus 200 of FISTA

ISTA: 1000 Iterations

FISTA: 200 Iterations

Original Versus Deblurring via FISTA

Original

FISTA:1000 Iterations

Function Values errors $F(\mathbf{x}^k) - F(\mathbf{x}^*)$

Weighted FISTA

- $\blacktriangleright \mathbb{E} = \mathbb{R}^n$
- \blacktriangleright The underlying assumption is that $\mathbb E$ is Euclidean.
- ► Assume that the endowed inner product is the **Q**-inner product:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{Q} \mathbf{y},$$

where $\mathbf{Q} \in \mathbb{S}_{++}^{n}$. $\mathbf{\nabla} f(\mathbf{x}) = \mathbf{Q}^{-1}D_{f}(\mathbf{x})$, where

$$D_f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{x}) \end{pmatrix}.$$

• $L_f^{\mathbf{Q}}$ (Lipschitz constant of f w.r.t. the **Q**-norm):

 $\|\mathbf{Q}^{-1}D_f(\mathbf{x})-\mathbf{Q}^{-1}D_f(\mathbf{y})\|_{\mathbf{Q}} \leq L_f^{\mathbf{Q}}\|\mathbf{x}-\mathbf{y}\|_{\mathbf{Q}} \text{ for any } \mathbf{x},\mathbf{y} \in \mathbb{R}^n.$

Weighted FISTA

The general update rule for FISTA in this case will have the form

(a) $\mathbf{x}^{k+1} = \operatorname{prox}_{l_{f}} \left(\mathbf{y}^{k} - \frac{1}{L_{f}} \mathbf{Q}^{-1} D_{f}(\mathbf{y}^{k}) \right).$ (b) $t_{k+1} = \frac{1 + \sqrt{1 + 4t_{k}^{2}}}{2}.$ (c) $\mathbf{y}^{k+1} = \mathbf{x}^{k+1} + \left(\frac{t_{k}-1}{t_{k+1}}\right) (\mathbf{x}^{k+1} - \mathbf{x}^{k}).$

The prox operator in step (a) is computed in terms of the Q-norm:

$$\operatorname{prox}_{h}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{u} \in \mathbb{R}^{n}} \left\{ h(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|_{\mathbf{Q}}^{2} \right\}.$$

The convergence result will also be written in term of the Q-norm

$$egin{aligned} & \mathcal{F}(\mathbf{x}^k) - \mathcal{F}_{ ext{opt}} \leq rac{2lpha L_f^{\mathbf{Q}} \|\mathbf{x}^0 - \mathbf{x}^*\|_{\mathbf{Q}}^2}{(k+1)^2}. \end{aligned}$$

Restarting FISTA in the Strongly Convex Case

- Assume that f is σ -strongly convex for some $\sigma > 0$.
- The proximal gradient method attains an ε-optimal solution after an order of O(κ log(¹/_ε)) iterations (κ = ^{L_f}/_σ).
- ► A natural question is how the complexity result improves when using FISTA.
- ▶ Done by incorporating a restarting mechanism to FISTA improves complexity result to O(√k log(¹/_ε))

Restarted FISTA Initialization: pick $z^{-1} \in \mathbb{E}$ and a positive integer *N*. Set $z^0 = T_{L_f}(z^{-1})$. **General step** $(k \ge 0)$

▶ run *N* iterations of FISTA with constant stepsize $(L_k \equiv L_f)$ and input (f, g, \mathbf{z}^k) and obtain a sequence $\{\mathbf{x}^n\}_{n=0}^N$;

► set $\mathbf{z}^{k+1} = \mathbf{x}^N$.

Restarted FISTA

Theorem $[O(\sqrt{\kappa}\log(\frac{1}{\varepsilon}))$ complexity of restarted FISTA] Suppose that that f is σ -strongly convex ($\sigma > 0$). Let $\{\mathbf{z}^k\}_{k\geq 0}$ be the sequence generated by the restarted FISTA method employed with $N = \lceil \sqrt{8\kappa} - 1 \rceil$. Let R be an upper bound on $\|\mathbf{z}^{-1} - \mathbf{x}^*\|$. Then

(a)
$$F(\mathbf{z}^{k}) - F_{\text{opt}} \leq \frac{L_{f}R^{2}}{2} \left(\frac{1}{2}\right)^{k}$$
;

(b) after k iterations of FISTA with k satisfying

$$k \geq \sqrt{8\kappa} \left(rac{\log(rac{1}{arepsilon})}{\log(2)} + rac{\log(L_{\mathrm{f}}R^2)}{\log(2)}
ight),$$

an ε -optimal solution is obtained at the end of last completed cycle:

$$F(\mathbf{z}^{\lfloor \frac{k}{N} \rfloor}) - F_{\text{opt}} \leq \varepsilon.$$

Smoothing

- A. Beck and M. Teboulle, Smoothing and first order methods: a unified framework. SIAM J. Optim. (2012)
- Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. (2005)

Smoothing

- It is known that in general smooth convex optimization problems can be solved with complexity O(1/ε²)
- ▶ FISTA requires $O(1/\sqrt{\varepsilon})$ to obtain an ε -optimal solution of the composite model f + g.
- We will show how FISTA can be used to devise a method for more general nonsmooth convex problems in an improved complexity of O(1/ε).

The model under consideration is

$$(P) \quad \min\{f(\mathbf{x}) + h(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}.$$

- ► *f* L_f-smooth and convex;
- g proper closed and convex and "proximable";
- h real-valued and convex (but not "proximable")

The Idea

$(P) \quad \min\{f(\mathbf{x}) + h(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}.$

- Solving (P) with FISTA with smooth/nosmooth parts (f, g + h) is not practical.
- ► The idea will be to find a smooth approximation of h, say h and solve the problem via FISTA with smooth and nonsmooth parts taken as (f + h, g).
- This simple idea will be the basis for the improved $O(1/\varepsilon)$ complexity.
- Need to study in more details the notions of smooth approximations and smoothability.

Smooth Approximations and Smoothability

- ▶ Definition. A convex function $h : \mathbb{E} \to \mathbb{R}$ is called (α, β) -smoothable $(\alpha, \beta > 0)$ if for any $\mu > 0$ there exists a convex differentiable function $h_{\mu} : \mathbb{E} \to \mathbb{R}$ such that
 - (a) $h_{\mu}(\mathbf{x}) \leq h(\mathbf{x}) \leq h_{\mu}(\mathbf{x}) + \beta \mu$ for all $\mathbf{x} \in \mathbb{E}$. (b) h_{μ} is $\frac{\alpha}{\mu}$ -smooth.
- The function h_{μ} is called a $\frac{1}{\mu}$ -smooth approximation of h with parameters (α, β) .

Examples:

- ▶ $h(\mathbf{x}) = \|\mathbf{x}\|_2 (\mathbb{E} = \mathbb{R}^n)$. For any $\mu > 0$, $h_\mu(\mathbf{x}) \equiv \sqrt{\|\mathbf{x}\|_2^2 + \mu^2} \mu$ is a $\frac{1}{\mu}$ -smooth approximation of h with parameters $(1, 1) \Rightarrow h$ is (1,1)-smoothable.
- ▶ $h(\mathbf{x}) = \max\{x_1, x_2, ..., x_n\}(\mathbb{E} = \mathbb{R}^n)$. For any $\mu > 0$, $h_{\mu}(\mathbf{x}) = \mu \log \left(\sum_{i=1}^n e^{x_i/\mu}\right) - \mu \log n$ is a smooth approximation of h with parameters $(1, \log n) \Rightarrow h$ is $(1, \log n)$ -smoothable.

Calculus of Smooth Approximations

Theorem.

- (a) Let $h^1, h^2 : \mathbb{E} \to \mathbb{R}$ be convex functions and let γ_1, γ_2 be nonnegative numbers. Suppose that for a given $\mu > 0$, h^i_{μ} is a $\frac{1}{\mu}$ -smooth approximation of h^i with parameters (α_i, β_i) for i = 1, 2, then $\gamma_1 h^1_{\mu} + \gamma_2 h^2_{\mu}$ is a $\frac{1}{\mu}$ -smooth approximation of $\gamma_1 h^1 + \gamma_2 h^2$ with parameters $(\gamma_1 \alpha_1 + \gamma_2 \alpha_2, \gamma_1 \beta_1 + \gamma_2 \beta_2)$.
- (b) Let $\mathcal{A} : \mathbb{E} \to \mathbb{V}$ be a linear transformation between the Euclidean spaces \mathbb{E} and \mathbb{V} . Let $h : \mathbb{V} \to \mathbb{R}$ be a convex function and define

 $q(\mathbf{x}) \equiv h(\mathcal{A}(\mathbf{x}) + \mathbf{b}),$

where $\mathbf{b} \in \mathbb{V}$. Suppose that for a given $\mu > 0$, h_{μ} is a $\frac{1}{\mu}$ -smooth approximation of h with parameters (α, β) . Then the function $q_{\mu}(\mathbf{x}) \equiv h_{\mu}(\mathcal{A}(\mathbf{x}) + \mathbf{b})$ is a $\frac{1}{\mu}$ -smooth approximation of q with parameters $(\alpha ||\mathcal{A}||^2, \beta)$.

Proof: very easy...

Operations Preserving Smoothability

Corollary.

(a) Let $h^1, h^2 : \mathbb{E} \to \mathbb{R}$ be convex functions which are (α_1, β_1) - and (α_2, β_2) -smoothable respectively, and let γ_1, γ_2 be nonnegative numbers. Then $\gamma_1 h^1 + \gamma_2 h^2$ is a $(\gamma_1 \alpha_1 + \gamma_2 \alpha_2, \gamma_1 \beta_1 + \gamma_2 \beta_2)$ -smoothable function.

(b) Let $\mathcal{A} : \mathbb{E} \to \mathbb{V}$ be a linear transformation between the Euclidean spaces \mathbb{E} and \mathbb{V} . Let $h : \mathbb{V} \to \mathbb{R}$ be a convex (α, β) -smoothable function and define

$$q(\mathbf{x}) \equiv g(\mathcal{A}(\mathbf{x}) + \mathbf{b}),$$

where $\mathbf{b} \in \mathbb{V}$. Then q is an $(\alpha \|\mathcal{A}\|^2, \beta)$ -smoothable function.

Smooth Approximation of Piecewise Affine Functions

- Let $q(\mathbf{x}) = \max_{i=1,...,m} \{\mathbf{a}_i^T \mathbf{x} + b_i\}$, where $\mathbf{a}_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ for any i = 1, 2, ..., m.
- ▶ $q(\mathbf{x}) = g(\mathbf{A}\mathbf{x} + \mathbf{b})$, where $g(\mathbf{y}) = \max\{y_1, y_2, \dots, y_m\}$, **A** is the matrix whose rows are $\mathbf{a}_1^T, \mathbf{a}_2^T, \dots, \mathbf{a}_m^T$ and $\mathbf{b} = (b_1, b_2, \dots, b_m)^T$.
- ► Let $\mu > 0$. $g_{\mu}(\mathbf{y}) = \mu \log \left(\sum_{i=1}^{m} e^{y_i/\mu} \right) \mu \log m$ is a $\frac{1}{\mu}$ -smooth approximation of g with parameters $(1, \log m)$.
- Therefore,

$$q_{\mu}(\mathbf{x}) \equiv g_{\mu}(\mathbf{A}\mathbf{x} + \mathbf{b}) = \mu \log \left(\sum_{i=1}^{m} e^{(\mathbf{a}_{i}^{ op}\mathbf{x} + b_{i})/\mu}
ight) - \mu \log m$$

is a $\frac{1}{\mu}$ -smooth approximation of q with parameters $(\|\mathbf{A}\|_{2,2}^2, \log m)$.

The Moreau Envelope

Definition. Given a proper closed convex function $f : \mathbb{E} \to (-\infty, \infty]$, and $\mu > 0$, the Moreau envelope of f is the function

$$M_f^{\mu}(\mathbf{x}) = \min_{\mathbf{u}\in\mathbb{E}}\left\{f(\mathbf{u}) + \frac{1}{2\mu}\|\mathbf{x}-\mathbf{u}\|^2\right\}.$$

- The parameter μ is called the smoothing parameter.
- ▶ By the first prox theorem the minimization problem defining the Moreau envelope has a unique solution, given by prox_{µf}(x). Therefore,

$$M_f^{\mu}(\mathbf{x}) = f(\operatorname{prox}_{\mu f}(\mathbf{x})) + \frac{1}{2\mu} \|\mathbf{x} - \operatorname{prox}_{\mu f}(\mathbf{x})\|^2.$$

Examples

▶ Indicators. Suppose that $f = \delta_C$, where $C \subseteq \mathbb{E}$ is a nonempty closed and convex set. Then $\operatorname{prox}_f = P_C$ and

$$M_f^{\mu}(\mathbf{x}) = \delta_C(P_C(\mathbf{x})) + \frac{1}{2\mu} \|\mathbf{x} - P_C(\mathbf{x}))\|^2.$$

Therefore,

$$M^\mu_{\delta_C}=rac{1}{2\mu}d_C^2.$$

• Euclidean Norms $f(\mathbf{x}) = \|\mathbf{x}\|$. Then for any $\mu > 0$ and $\mathbf{x} \in \mathbb{E}$,

$$\operatorname{prox}_{\mu f}(\mathbf{x}) = \left(1 - \frac{\mu}{\max\{\|\mathbf{x}\|, \mu\}}\right) \mathbf{x}.$$

Therefore,

$$M_{f}^{\mu}(\mathbf{x}) = \| \operatorname{prox}_{\mu f}(\mathbf{x}) \| + \frac{1}{2\mu} \| \mathbf{x} - \operatorname{prox}_{\mu f}(\mathbf{x}) \|^{2} = \underbrace{\begin{cases} \frac{1}{2\mu} \| \mathbf{x} \|^{2}, & \| \mathbf{x} \| \leq \mu, \\ \| \mathbf{x} \| - \frac{\mu}{2}, & \| \mathbf{x} \| > \mu, \end{cases}_{H_{\mu}(\mathbf{x})}$$

 H_{μ} - Huber function

Amir Beck

Huber Function

 H_{μ} gets smoother as μ increases.

Smoothability of the Moreau Envelope

Theorem. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper closed and convex function. Let $\mu > 0$. Then M_f^{μ} is $\frac{1}{\mu}$ -smooth over \mathbb{E} and

$$abla M_f^{\mu}(\mathbf{x}) = rac{1}{\mu} \left(\mathbf{x} - \mathrm{prox}_{\mu f}(\mathbf{x})
ight).$$

Examples:

- (smoothability of the squared distance) Let C ⊆ E be a nonempty closed and convex set. Recall that ¹/₂d²_C = M¹_{δ_C}. Then ¹/₂d²_C is 1-smooth and ∇ (1/2d²_C) (x) = x − prox_{δ_C}(x) = x − P_C(x).
- (smoothability of Huber) $H_{\mu} = M_f^{\mu}$, where $f(\mathbf{x}) = \|\mathbf{x}\|$. Then H_{μ} is $\frac{1}{\mu}$ -smooth and

$$\nabla H_{\mu}(\mathbf{x}) = \frac{1}{\mu} \left(\mathbf{x} - \operatorname{prox}_{\mu f}(\mathbf{x}) \right) = \frac{1}{\mu} \left(\mathbf{x} - \left(1 - \frac{\mu}{\max\{\|\mathbf{x}\|, \mu\}} \right) \mathbf{x} \right)$$
$$= \begin{cases} \frac{1}{\mu} \mathbf{x}, & \|\mathbf{x}\| \le \mu, \\ \frac{|\mathbf{x}|}{\|\mathbf{x}\|}, & \|\mathbf{x}\| > \mu, \end{cases}$$

Amir Beck

Smoothability of Lipschitz Convex Functions

Theorem. Let $h : \mathbb{E} \to \mathbb{R}$ be a convex function satisfying

 $|h(\mathbf{x}) - h(\mathbf{y})| \le \ell_h \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.

Then $\mu > 0$ M_h^{μ} is a $\frac{1}{\mu}$ -smooth approximation of h with parameters $(1, \frac{\ell_h^2}{2})$.

Corollary. Let $h : \mathbb{E} \to \mathbb{R}$ be convex and Lipschitz with constant ℓ_h . Then h is $(1, \frac{\ell_h^2}{2})$ -smoothable.

Examples:

► (smooth approximation of the l₂-norm) Let h(x) = ||x||₂ (over ℝⁿ). Then h is convex and Lipschitz with constant l_h = 1. Therefore,

$$M_{h}^{\mu}(\mathbf{x}) = H_{\mu}(\mathbf{x}) = \begin{cases} \frac{1}{2\mu} \|\mathbf{x}\|_{2}^{2}, & \|\mathbf{x}\|_{2} \leq \mu, \\ \|\mathbf{x}\|_{2} - \frac{\mu}{2}, & \|\mathbf{x}\|_{2} > \mu. \end{cases}$$

is a ¹/_μ-smooth approximation of *h* with parameters (1, ¹/₂).
 (smooth approximation of the *l*₁-norm) Let *h*(**x**) = ||**x**||₁ Then *h* is convex and Lipschitz with constant *l*_h = √*n*. Hence, *M*^μ_h(**x**) = ∑ⁿ_{i=1} *H*_μ(*x_i*) is a ¹/_μ-smooth approximation of *h* with parameters (1, ⁿ/₂).

Smooth Approximations of the Absolute Value Function Three possible smooth approximations of h(x) = |x|

- $h^1_{\mu}(x) = \sqrt{x^2 + \mu^2} \mu$, $(\alpha, \beta) = (1, 1)$.
- ► $h_{\mu}^{2}(x) = \mu \log(e^{x/\mu} + e^{-x/\mu}) \mu \log 2$, $(\alpha, \beta) = (1, \log 2)$.
- $h^3_{\mu}(x) = H_{\mu}(x), \ (\alpha, \beta) = (1, \frac{1}{2}).$

Back to Algorithms - Model and Assumptions

Main model:

$$(P) \quad \min_{\mathbf{x} \in \mathbb{E}} \{ H(\mathbf{x}) \equiv f(\mathbf{x}) + h(\mathbf{x}) + g(\mathbf{x}) \}$$

(A)
$$f : \mathbb{E} \to \mathbb{R}$$
 is L_f -smooth $(L_f > 0)$.

(B) $h: \mathbb{E} \to \mathbb{R}$ is (α, β) -smoothable $(\alpha, \beta > 0)$. For any $\mu > 0$, h_{μ} denotes a $\frac{1}{\mu}$ -smooth approximation of h with parameters (α, β) .

(C) $g: \mathbb{E} \to (-\infty, \infty]$ is proper closed and convex.

(D) H has bounded level sets. Specifically, for any $\delta>0,$ there exists $R_{\delta}>0$ such that

 $\|\mathbf{x}\| \leq R_{\delta}$ for any **x** satisfying $H(\mathbf{x}) \leq \delta$.

(E) The optimal set of (P) is nonempty and denoted by X^* . The optimal value of the problem is denoted by H_{opt} .

The S-FISTA Method

► The idea is to consider the following smoothed version of (P):

$$(P_{\mu}) \quad \min_{\mathbf{x}\in\mathbb{E}} \{H_{\mu}(\mathbf{x}) \equiv \underbrace{f(\mathbf{x}) + h_{\mu}(\mathbf{x})}_{F_{\mu}(\mathbf{x})} + g(\mathbf{x})\},$$

for some $\mu > 0$, and solve it using FISTA with constant stepsize.

• A Lipschitz constant of ∇F_{μ} is $L_f + \frac{\alpha}{\mu}$; the stepsize is taken as $\frac{1}{L_f + \frac{\alpha}{\mu}}$.

S-FISTA Input: $\mathbf{x}^{0} \in \text{dom}(g), \mu > 0.$ Initialization: set $\mathbf{y}^{0} = \mathbf{x}^{0}, t_{0} = 1$; construct $h_{\mu} - a \frac{1}{\mu}$ -smooth approximation of h with parameters (α, β) ; set $F_{\mu} = f + h_{\mu}, \tilde{L} = L_{f} + \frac{\alpha}{\mu}.$ General step: for any k = 0, 1, 2, ... execute the following steps: (a) $\mathbf{x}^{k+1} = \text{prox}_{\frac{1}{L}g} \left(\mathbf{y}^{k} - \frac{1}{L} \nabla F_{\mu}(\mathbf{y}^{k}) \right);$ (b) $t_{k+1} = \frac{1 + \sqrt{1 + 4t_{k}^{2}}}{2};$ (c) $\mathbf{y}^{k+1} = \mathbf{x}^{k+1} + \left(\frac{t_{k}-1}{t_{k+1}} \right) (\mathbf{x}^{k+1} - \mathbf{x}^{k}).$

$O(1/\varepsilon)$ complexity of S-FISTA

Theorem. Let $\varepsilon \in (0, \overline{\varepsilon})$ for some fixed $\overline{\varepsilon}$. Let $\{\mathbf{x}^k\}_{k \ge 0}$ be the sequence generated by S-FISTA with smoothing parameter

$$u = \sqrt{\frac{\alpha}{\beta}} \frac{\varepsilon}{\sqrt{\alpha\beta} + \sqrt{\alpha\beta + L_f \varepsilon}}$$

Then for any k satisfying

$$k \geq 2\sqrt{2\alpha\beta\Gamma}\frac{1}{\varepsilon} + \sqrt{2L_f\Gamma}\frac{1}{\sqrt{\varepsilon}},$$

where $\Gamma = (R_{H(\mathbf{x}^0) + \frac{\varepsilon}{2}} + \|\mathbf{x}^0\|)^2$, it holds that $H(\mathbf{x}^k) - H_{opt} \le \varepsilon$.

Minimization of "Proximable" Functions

Consider the problem

 $(P_1) \quad \min_{\mathbf{x}\in\mathbb{E}} \{h(\mathbf{x}) : \mathbf{x}\in C\},\$

- C is a nonempty closed and convex set.
- $h: \mathbb{E} \to \mathbb{R}$ is convex function Lipschitz with constant ℓ_h .
- Fits model (P) with f = 0 and $g = \delta_C$.
- $h_{\mu} = M_{h}^{\mu}$ is a $\frac{1}{\mu}$ -smooth approximation of h with parameters $(\alpha, \beta) = (1, \frac{\ell_{h}^{2}}{2})$.
- $\nabla M_h^{\mu}(\mathbf{x}) = \frac{1}{\mu} (\mathbf{x} \operatorname{prox}_{\mu h}(\mathbf{x})).$
- ▶ After employing $O(1/\varepsilon)$ iterations of the the S-FISTA method with

$$\mu = \sqrt{\frac{\alpha}{\beta}} \frac{\varepsilon}{\sqrt{\alpha\beta} + \sqrt{\alpha\beta} + L_{\rm f}\varepsilon} = \sqrt{\frac{\alpha}{\beta}} \frac{\varepsilon}{\sqrt{\alpha\beta} + \sqrt{\alpha\beta}} = \frac{\varepsilon}{2\beta} = \frac{\varepsilon}{\ell_{\rm h}^2}$$

an ε -optimal solution will be achieved.

• The stepsize is $\frac{1}{\tilde{L}}$, where $\tilde{L} = \frac{\alpha}{\mu} = \frac{1}{\mu}$.

Amir Beck

S-FISTA for Solving (P_1)

▶ The general step of the S-FISTA method is

$$\mathbf{x}^{k+1} = \operatorname{prox}_{\frac{1}{\tilde{L}}g}\left(\mathbf{y}^{k} - \frac{1}{\tilde{L}}\nabla F_{\mu}(\mathbf{y}^{k})\right) = P_{C}\left(\mathbf{y}^{k} - \frac{1}{\tilde{L}\mu}(\mathbf{y}^{k} - \operatorname{prox}_{\mu h}(\mathbf{y}^{k}))\right)$$
$$= P_{C}(\operatorname{prox}_{\mu h}(\mathbf{y}^{k})).$$

S-FISTA for solving (P₁) Initialization: set $\mathbf{y}^0 = \mathbf{x}^0 \in C$, $t_0 = 1$; set $\mu = \frac{\varepsilon}{\ell_h^2}$ and $\tilde{L} = \frac{\ell_h^2}{\varepsilon}$. General step: for any k = 0, 1, 2, ... execute the following steps: (a) $\mathbf{x}^{k+1} = P_C(\operatorname{prox}_{\mu h}(\mathbf{y}^k))$; (b) $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$; (c) $\mathbf{y}^{k+1} = \mathbf{x}^{k+1} + \left(\frac{t_k-1}{t_{k+1}}\right) (\mathbf{x}^{k+1} - \mathbf{x}^k)$.

Block Proximal Gradient Methods

- A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods, SIAM J. Optim. (2013)
- M. Hong, X. Wang, M. Razaviyayn, and Z. Q Luo, Iteration complexity analysis of block coordinate descent methods, Arxiv.
- Q. Lin, Z. Lu, and L. Xiao, An accelerated randomized proximal coordinate gradient method and its application to regularized empirical risk minimization, SIAM J. Optim., (2015)
- R. Shefi and M. Teboulle, On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems, EURO J. Comput. Optim. (2016)
Block Proximal Gradient Methods

The Model

$$(P) \quad \min_{\mathbf{x}_1 \in \mathbb{E}_1, \mathbf{x}_2 \in \mathbb{E}_2, \dots, \mathbf{x}_p \in \mathbb{E}_p} \left\{ F(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p) = f(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p) + \sum_{j=1}^p g_j(\mathbf{x}_j) \right\},\$$

Setting and Notation

- $\mathbb{E}_1, \mathbb{E}_2, \ldots, \mathbb{E}_p$ are Euclidean spaces.
- ▶ $\mathbb{E} = \mathbb{E}_1 \times \mathbb{E}_2 \times \cdots \times \mathbb{E}_p$. We use the notation that a vector $\mathbf{x} \in \mathbb{E}$ can be written as $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p)$.
- The product space is also Euclidean with endowed norm

 $\|(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p)\|_{\mathbb{E}} = \sqrt{\sum_{i=1}^p \|\mathbf{u}_i\|_{\mathbb{E}_i}^2}.$

- ▶ $g : \mathbb{E} \to (-\infty, \infty]$ is defined by $g(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p) \equiv \sum_{i=1}^p g_i(\mathbf{x}_i)$. (P) can thus be simply written as $\min_{\mathbf{x} \in \mathbb{E}} f(\mathbf{x}) + g(\mathbf{x})$
- ▶ The gradient w.r.t. the *i*th block ($i \in \{1, 2, ..., p\}$) is denoted by $\nabla_i f$ $\nabla f(\mathbf{x}) = (\nabla_1 f(\mathbf{x}), \nabla_2 f(\mathbf{x}), ..., \nabla_p f(\mathbf{x})).$
- ▶ For any $i \in \{1, 2, ..., p\}$ we define $U_i : \mathbb{E}_i \to \mathbb{E}$ to be the linear transformation given by $U_i(\mathbf{d}) = (\mathbf{0}, ..., \mathbf{0}, \mathbf{d}, \mathbf{0}, ..., \mathbf{0}), \mathbf{d} \in \mathbb{E}_i$.

Underlying Assumption

- (A) g_i : E_i → (-∞, ∞] is proper closed and convex for any i ∈ {1, 2, ..., p}.
 (B) f : E → R is L_f-smooth and convex.
- (C) There exist $L_1, L_2, \ldots, L_p > 0$ such that for any $i \in \{1, 2, \ldots, p\}$ it holds that

 $\|\nabla_i f(\mathbf{x}) - \nabla_i f(\mathbf{x} + \mathcal{U}_i(\mathbf{d}))\| \leq L_i \|\mathbf{d}\|$

for all $\mathbf{x} \in \mathbb{E}$ and $\mathbf{d} \in \mathbb{E}_i$.

(D) The optimal set of problem (P) is nonempty and denoted by X^* . The optimal value is denoted by F_{opt} .

The Block Proximal Gradient Method

The Block Proximal Gradient Method

Initialization. pick $\mathbf{x}^0 = (\mathbf{x}_1^0, \mathbf{x}_2^0, \dots, \mathbf{x}_p^0) \in \operatorname{int}(\operatorname{dom}(f))$. **General step:** for any $k = 0, 1, 2, \dots$ execute the following steps: (a) pick $i_k \in \{1, 2, \dots, p\}$; (b) $\mathbf{x}_j^{k+1} = \begin{cases} \operatorname{prox}_{\frac{1}{L_{i_k}}g_{i_k}}\left(\mathbf{x}_{i_k} - \frac{1}{L_{i_k}}\nabla_{i_k}f(\mathbf{x}^k)\right), & j = i_k, \\ \mathbf{x}_j^k, & j \neq i_k. \end{cases}$

Index selection strategies:

cyclic. i_k = (k mod p) + 1.
 Cyclic Block Proximal Gradient (CBPG)

▶ randomized. *i_k* is randomly picked from {1, 2, ..., *p*} by a uniform distribution.

Randomized Block Proximal Gradient (RBPG)

O(1/k) Rate of CBPG

Theorem. Suppose that Assumptions (A-D) hold as well as (E) For any $\alpha > 0$, there exists $R_{\alpha} > 0$ such that

$$\max_{\mathbf{x},\mathbf{x}^*\in\mathbb{E}}\{\|\mathbf{x}-\mathbf{x}^*\|:F(\mathbf{x})\leq\alpha,\mathbf{x}^*\in X^*\}\leq R_{\alpha}.$$

Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by the CBPG method. For any $k\geq 2$:

$$F(\mathbf{x}^{pk}) - F_{opt} \le \max\left\{ \left(\frac{1}{2}\right)^{(k-1)/2} (F(\mathbf{x}^0) - F_{opt}), \frac{8p(L_f + L_{max})^2 R^2}{L_{min}(k-1)} \right\},$$

where $L_{min} = \min_{i=1,2,...,p} L_i$, $L_{max} = \max_{i=1,2,...,p} L_i$ and $R = R_{F(\mathbf{x}^0)}$.

O(1/k) Rate of RBPG

Theorem. Suppose that Assumption (A)-(D) hold. Let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by the RBPG method. Let $\mathbf{x}^* \in X^*$. Then for any $k \geq 0$,

$$\mathsf{E}_{\xi_k}(F(\mathbf{x}^{k+1})) - \mathcal{F}_{\mathrm{opt}} \leq \frac{p}{p+k+1} \left(\frac{1}{2} \| \mathbf{x}^0 - \mathbf{x}^* \|_L^2 + \mathcal{F}(\mathbf{x}^0) - \mathcal{F}_{\mathrm{opt}} \right)$$

Here

$$\|\mathbf{v}\|_L^2 \equiv \sqrt{\sum_{i=1}^p L_i \|\mathbf{v}_i\|^2}$$

Dual-Based Proximal Gradient Methods

- ► A. Beck and M. Teboulle, A fast dual proximal gradient algorithm for convex minimization and applications, Oper. Res. Lett. (2014)
- A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process. (2009)
- A. Beck, L. Tetruashvili, Y. Vaisbourd, and A. Shemtov, Rate of convergence analysis of dual-based variables decomposition methods for strongly convex problems, (2016)
- A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision (2004)
- ▶ P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim., (1991)

The Main Model

Main Model:

$$(P) \quad f_{\text{opt}} = \min_{\mathbf{x} \in \mathbb{E}} \left\{ f(\mathbf{x}) + g(\mathcal{A}(\mathbf{x})) \right\},$$

Underlying Assumptions:

- (A) $f : \mathbb{E} \to (-\infty, +\infty]$ is proper closed and σ -strongly convex ($\sigma > 0$).
- (B) $g: \mathbb{V} \to (-\infty, +\infty]$ is proper closed and convex.
- (C) $\mathcal{A} : \mathbb{E} \to \mathbb{V}$ is a linear transformation.

(D) there exists $\hat{\mathbf{x}} \in ri(dom(f))$ and $\hat{\mathbf{z}} \in ri(dom(g))$ such that $\mathcal{A}(\hat{\mathbf{x}}) = \hat{\mathbf{z}}$.

Existence and uniqueness of optimal solution: under the above assumptions, the objective function is proper closed and strongly convex, and hence there exists a unique optimal solution, which will be denoted by x^* .

Example 1: Orthogonal Projection onto a Polyhedral set

Let

 $S = {\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \le \mathbf{b}},$

where $\mathbf{A} \in \mathbb{R}^{p \times n}$, $\mathbf{b} \in \mathbb{R}^{p}$. Assume that $S \neq \emptyset$.

▶ Let $\mathbf{d} \in \mathbb{R}^n$. The orthogonal projection of \mathbf{d} onto S is the unique optimal solution of

$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^2:\mathbf{A}\mathbf{x}\leq\mathbf{b}\right\}.$$

Fits model (P) with $\mathbb{E} = \mathbb{R}^n$, $\mathbb{V} = \mathbb{R}^p$, $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{d}\|^2$,

$$g(\mathbf{z}) = \delta_{\operatorname{Box}[-\infty \mathbf{e}, \mathbf{b}]}(\mathbf{z}) = \begin{cases} \mathbf{0}, & \mathbf{z} \leq \mathbf{b}, \\ \infty, & \text{else.} \end{cases}$$

and $\mathcal{A}(\mathbf{x}) \equiv \mathbf{A}\mathbf{x}$.

σ = 1

Example 2: One-Dimensional Total Variation Denoising

Denoising problem:

$$\min_{\mathbf{x}\in\mathbb{E}}\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^2+R(\mathcal{A}(\mathbf{x})).$$

- $\blacktriangleright \ d \in \mathbb{E}$ noisy and known signal
- $\mathcal{A} : \mathbb{E} \to \mathbb{V}$ linear transformation.
- ▶ $R: \mathbb{V} \to \mathbb{R}_+$ regularizing function measuring the magnitude of its argument.
- One-dimensional total variation denoising problem, $\mathbb{E} = \mathbb{R}^n, \mathbb{V} = \mathbb{R}^{n-1}, \mathcal{A}(\mathbf{x}) = \mathbf{D}\mathbf{x}, R(\mathbf{z}) = \lambda \|\mathbf{z}\|_1 (\lambda > 0), \mathbf{D}$ defined by $\mathbf{D}\mathbf{x} = (x_1 - x_2, x_2 - x_3, \dots, x_{n-1} - x_n)^T$

$$(P_1) \quad \min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \frac{1}{2} \|\mathbf{x} - \mathbf{d}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_1 \right\}.$$

- More explicitly: $\min_{\mathbf{x}\in\mathbb{E}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|_2^2+\lambda\sum_{i=1}^{n-1}|x_i-x_{i+1}|\right\}$.
- ▶ The function $\mathbf{x} \mapsto \|\mathbf{D}\mathbf{x}\|_1$ is a one-dimensional total variation function.
- Fits model (P) with $\mathbb{E} = \mathbb{R}^n, \mathbb{V} = \mathbb{R}^{n-1}, f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x} - \mathbf{d}||^2 (\sigma = 1), g(\mathbf{y}) = \lambda ||\mathbf{y}||_1, \mathcal{A}(\mathbf{x}) \equiv \mathbf{D}\mathbf{x}$

Amir Beck

Proximal-Based Methods

The Dual Problem

- (P) is the same as $\min_{\mathbf{x},\mathbf{z}} \{ f(\mathbf{x}) + g(\mathbf{z}) : \mathcal{A}(\mathbf{x}) \mathbf{z} = \mathbf{0} \}$
- Lagrangian:

 $L(\mathbf{x}, \mathbf{z}; \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z}) - \langle \mathbf{y}, \mathcal{A}(\mathbf{x}) - \mathbf{z} \rangle = f(\mathbf{x}) + g(\mathbf{z}) - \langle \mathcal{A}^T(\mathbf{y}), \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle.$

Minimizing the Lagrangian w.r.t. x and z, we obtain the dual problem

$$(D) \quad q_{ ext{opt}} = \max_{\mathbf{y} \in \mathbb{V}} \left\{ q(\mathbf{y}) \equiv -f^*(\mathcal{A}^{\mathcal{T}}(\mathbf{y})) - g^*(-\mathbf{y})
ight\}$$

Theorem [strong duality of the pair (P),(D)] $f_{opt} = q_{opt}$ and the dual problem (D) attains an optimal solution.

The dual problem in minimization form:

$$(D') \quad \min_{\mathbf{y} \in \mathbb{V}} \{F(\mathbf{y}) + G(\mathbf{y})\}$$

$$\begin{array}{rcl} F(\mathbf{y}) &\equiv& f^*(\mathcal{A}^T(\mathbf{y})), \\ G(\mathbf{y}) &\equiv& g^*(-\mathbf{y}). \end{array}$$

Amir Beck

Proximal-Based Methods

Rockafellar-Wets Theorem

Theorem [Rockafellar-Wets] Let $\sigma > 0$. Then

- (a) If $f : \mathbb{E} \to \mathbb{R}$ is a $\frac{1}{\sigma}$ -smooth convex function, then f^* is σ -strongly convex.
- (b) If $f : \mathbb{E} \to (-\infty, \infty]$ is a proper closed σ -strongly convex function, then $f^* : \mathbb{E} \to \mathbb{R}$ is $\frac{1}{\sigma}$ -smooth.

The Dual Problem

$$(D') \quad \min_{\mathbf{y} \in \mathbb{V}} \{F(\mathbf{y}) + G(\mathbf{y})\}$$

Properties of *F* and *G*:

(a) F: V → R is convex and L_F-smooth with L_F = ^{||A||²}/_σ;
(b) G: V → (-∞, ∞] is proper closed and convex.

Dual Proximal Gradient

Dual Proximal Gradient = Proximal Gradient on (D')

Dual Proximal Gradient – dual representation

- Initialization: pick $\mathbf{y}^0 \in \mathbb{V}$ and $L \ge L_F = \frac{\|\mathcal{A}\|^2}{\sigma}$.
- General step $(k \ge 0)$:

$$\mathbf{y}^{k+1} = \operatorname{prox}_{\frac{1}{L}G}\left(\mathbf{y}^{k} - \frac{1}{L}\nabla F(\mathbf{y}^{k})\right).$$

Theorem [rate of convergence of the dual objective function] Let $\{\mathbf{y}^k\}_{k\geq 0}$ be the sequence generated by the DPG method with $L \geq L_F = \frac{\|\mathcal{A}\|^2}{\sigma}$. Then for any dual optimal solution $\mathbf{y}^* \ k \geq 1$,

$$q_{ ext{opt}} - q(\mathbf{y}^k) \leq rac{L \|\mathbf{y}^0 - \mathbf{y}^*\|^2}{2k}.$$

Constructing a Primal Representation–Technical Lemma

Lemma. Let $F(\mathbf{y}) = f^*(\mathcal{A}^T(\mathbf{y}) + \mathbf{b}), G(\mathbf{y}) = g^*(-\mathbf{y})$, where f, g and \mathcal{A} satisfy properties (A),(B) and (C) and $\mathbf{b} \in \mathbb{E}$. Then for any $\mathbf{y}, \mathbf{v} \in \mathbb{V}$ and L > 0 the relation

$$\mathbf{y} = \operatorname{prox}_{\frac{1}{L}G}\left(\mathbf{v} - \frac{1}{L}\nabla F(\mathbf{v})\right)$$
(9)

holds if and only if

$$\mathbf{y} = \mathbf{v} - \frac{1}{L}\mathcal{A}(\tilde{\mathbf{x}}) + \frac{1}{L}\mathrm{prox}_{Lg}(\mathcal{A}(\tilde{\mathbf{x}}) - L\mathbf{v}),$$

where

$$\tilde{\mathbf{x}} = \operatorname*{argmax}_{\mathbf{x}} \left\{ \langle \mathbf{x}, \mathcal{A}^{T}(\mathbf{v}) + \mathbf{b} \rangle - f(\mathbf{x}) \right\}.$$

Dual Proximal Gradient - Primal Representation

The Dual Proximal Gradient (DPG) Method – primal representation Initialization: pick $\mathbf{y}^0 \in \mathbb{V}$, and $L \geq \frac{\|\mathcal{A}\|^2}{\sigma}$. General step: for any k = 0, 1, 2, ... execute the following steps: (a) set $\mathbf{x}^k = \underset{\mathbf{x}}{\operatorname{argmax}} \{ \langle \mathbf{x}, \mathcal{A}^T(\mathbf{y}^k) \rangle - f(\mathbf{x}) \}$; (b) set $\mathbf{y}^{k+1} = \mathbf{y}^k - \frac{1}{L}\mathcal{A}(\mathbf{x}^k) + \frac{1}{L}\operatorname{prox}_{Lg}(\mathcal{A}(\mathbf{x}^k) - L\mathbf{y}^k)$.

► The sequence {x^k}_{k≥0} generated by the method will be called "the primal sequence", although its elements are not necessarily feasible.

The Primal-Dual Relation

Obtaining a rate of the primal sequence is done using the following result.

Lemma [primal-dual relation] Let $\bar{\mathbf{y}} \in \text{dom}(G)$, and let

$$ar{\mathbf{x}} = \operatorname*{argmax}_{\mathbf{x} \in \mathbb{E}} \left\{ \langle \mathbf{x}, \mathcal{A}^{\mathcal{T}}(ar{\mathbf{y}})
angle - f(\mathbf{x})
ight\}.$$

Then

$$\|ar{\mathbf{x}} - \mathbf{x}^*\|^2 \leq rac{2}{\sigma}(q_{ ext{opt}} - q(ar{\mathbf{y}})).$$

O(1/k) Rate of the Primal Sequence Generated by DPG

Theorem. Let $\{\mathbf{x}^k\}_{k\geq 0}$ and $\{\mathbf{y}^k\}_{k\geq 0}$ be the primal and dual sequences generated by the DPG method with $L \geq L_F$. Then for any optimal dual solution \mathbf{y}^* and $k \geq 1$,

$$\|\mathbf{x}^k - \mathbf{x}^*\|^2 \leq rac{L\|\mathbf{y}^0 - \mathbf{y}^*\|^2}{\sigma k}.$$

Proof.

$$\|\mathbf{x}^k - \mathbf{x}^*\|^2 \leq rac{2}{\sigma}(q_{ ext{opt}} - q(\mathbf{y}^k)) \leq rac{2}{\sigma}rac{L\|\mathbf{y}^0 - \mathbf{y}^*\|^2}{2k},$$

Fast Dual Proximal Gradient (FDPG)

Fast Dual Proximal Gradient = FISTA on (D')

Fast Dual Proximal Gradient (FDPG) - dual representation
Initialization:
$$L \ge L_F = \frac{\|\mathcal{A}\|^2}{\sigma}, \mathbf{w}^0 = \mathbf{y}^0 \in \mathbb{E}, t_0 = 1.$$

General Step $(k \ge 0)$:
(a) $\mathbf{y}^{k+1} = \operatorname{prox}_{\frac{1}{L}G}(\mathbf{w}^k - \frac{1}{L}\nabla F(\mathbf{w}^k));$
(b) $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2};$
(c) $\mathbf{w}^{k+1} = \mathbf{y}^{k+1} + \left(\frac{t_k-1}{t_{k+1}}\right)(\mathbf{y}^{k+1} - \mathbf{y}^k).$

Theorem [rate of convergence of the dual objective function] Let $\{\mathbf{y}^k\}_{k\geq 0}$ be the sequence generated by the FDPG method with $L \geq L_F = \frac{\|\mathcal{A}\|^2}{\sigma}$. Then for any dual optimal solution \mathbf{y}^* of and $k \geq 1$,

$$q_{ ext{opt}} - q(\mathbf{y}^k) \leq rac{2L\|\mathbf{y}^0 - \mathbf{y}^*\|^2}{(k+1)^2}.$$

Fast Dual Proximal Gradient - Primal Representation

The Fast Dual Proximal Gradient (FDPG) Method - primal representation

Initialization: $L \ge L_F = \frac{||\mathcal{A}||^2}{\sigma}, \mathbf{w}^0 = \mathbf{y}^0 \in \mathbb{V}, t_0 = 1.$ General step $(k \ge 0)$: (a) $\mathbf{u}^k = \underset{\mathbf{u}}{\operatorname{argmax}} \left\{ \langle \mathbf{u}, \mathcal{A}^T(\mathbf{w}^k) \rangle - f(\mathbf{u}) \right\}.$ (b) $\mathbf{y}^{k+1} = \mathbf{w}^k - \frac{1}{L}\mathcal{A}(\mathbf{u}^k) + \frac{1}{L}\operatorname{prox}_{Lg}(\mathcal{A}(\mathbf{u}^k) - L\mathbf{w}^k)$ (c) $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$ (d) $\mathbf{w}^{k+1} = \mathbf{y}^{k+1} + \left(\frac{t_k - 1}{t_{k+1}}\right) (\mathbf{y}^{k+1} - \mathbf{y}^k).$

$O(1/k^2)$ Rate of the Primal Sequence Generated by FDPG

Theorem Let $\{\mathbf{x}^k\}_{k\geq 0}$ and $\{\mathbf{y}^k\}_{k\geq 0}$ be the primal and dual sequences generated by the FDPG method with $L \geq L_F = \frac{\|\mathcal{A}\|^2}{\sigma}$. Then for any optimal dual solution \mathbf{y}^* and $k \geq 1$,

$$\|\mathbf{x}^{k} - \mathbf{x}^{*}\|^{2} \le \frac{4L\|\mathbf{y}^{0} - \mathbf{y}^{*}\|^{2}}{\sigma(k+1)^{2}}.$$

Proof.

$$\|\mathbf{x}^k - \mathbf{x}^*\|^2 \leq rac{2}{\sigma}(q_{ ext{opt}} - q(\mathbf{y}^k)) \leq rac{2}{\sigma} \cdot rac{2L\|\mathbf{y}^0 - \mathbf{y}^*\|^2}{(k+1)^2}.$$

Example 1: Orthogonal Projection onto a Polyhedral set

$$(P_1) \quad \min_{\mathbf{x}\in\mathbb{R}^n}\left\{rac{1}{2}\|\mathbf{x}-\mathbf{d}\|^2:\mathbf{A}\mathbf{x}\leq\mathbf{b}
ight\}.$$

Fits model (P) with $\mathbb{E} = \mathbb{R}^n$, $\mathbb{V} = \mathbb{R}^p$, $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{d}\|^2$,

$$g(\mathbf{z}) = \delta_{\operatorname{Box}[-\infty \mathbf{e}, \mathbf{b}]}(\mathbf{z}) = \begin{cases} \mathbf{0}, & \mathbf{z} \leq \mathbf{b}, \\ \infty, & \text{else.} \end{cases}$$

and $\mathcal{A}(\mathbf{x}) \equiv \mathbf{A}\mathbf{x}$.

- *σ* = 1
- $\underset{\mathbf{x}}{\operatorname{argmax}}\{\langle \mathbf{v}, \mathbf{x} \rangle f(\mathbf{x})\} = \mathbf{v} + \mathbf{d} \text{ for any } \mathbf{v} \in \mathbb{R}^{n};$
- $\bullet \ \|\mathcal{A}\| = \|\mathbf{A}\|_{2,2};$
- $\mathcal{A}^{T}(\mathbf{y}) = \mathbf{A}^{T}\mathbf{y}$ for any $\mathbf{y} \in \mathbb{R}^{p}$;
- ► $\operatorname{prox}_{Lg}(\mathbf{z}) = P_{\operatorname{Box}[-\infty \mathbf{e}, \mathbf{b}]}(\mathbf{z}) = \min\{\mathbf{z}, \mathbf{b}\}.$

DPG and FDPG for solving (P_1)

Algorithm 1 [DPG for solving (P_1)] ▶ Initialization: $L \ge \|\mathbf{A}\|_{2,2}^2, \mathbf{y}^0 \in \mathbb{R}^p$. • General Step (k > 0): (a) $\mathbf{x}^k = \mathbf{A}^T \mathbf{v}^k + \mathbf{d}$: (b) $\mathbf{y}^{k+1} = \mathbf{y}^k - \frac{1}{t}\mathbf{A}\mathbf{x}^k + \frac{1}{t}\min\{\mathbf{A}\mathbf{x}^k - L\mathbf{y}^k, \mathbf{b}\}.$ **Algorithm 2** [FDPG for solving (P_1)] ▶ Initialization: $L \ge \|\mathbf{A}\|_{2,2}^2, \mathbf{w}^0 = \mathbf{y}^0 \in \mathbb{R}^p, t_0 = 1.$ • General Step $(k \ge 0)$: (a) $\mathbf{u}^k = \mathbf{A}^T \mathbf{w}^k + \mathbf{d}$: (b) $\mathbf{y}^{k+1} = \mathbf{w}^k - \frac{1}{t}\mathbf{A}\mathbf{u}^k + \frac{1}{t}\min\{\mathbf{A}\mathbf{u}^k - L\mathbf{w}^k, \mathbf{b}\};$ (c) $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$: (d) $\mathbf{w}^{k+1} = \mathbf{y}^{k+1} + \left(\frac{t_k-1}{t_{k+1}}\right) (\mathbf{y}^{k+1} - \mathbf{y}^k).$

Example $1\frac{1}{2}$: Orthogonal Projection onto the Intersection of Closed Convex Sets

$$(P_2) \quad \min_{\mathbf{x}\in\mathbb{E}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^2:\mathbf{x}\in\cap_{i=1}^p C_i\right\}.$$

•
$$C_1, C_2, \ldots, C_p \subseteq \mathbb{E}$$
 closed and convex.

- ▶ $\mathbf{d} \in \mathbb{E}$.
- ▶ Assume that $\bigcap_{i=1}^{p} C_i \neq \emptyset$ and that projecting onto each set C_i is an easy task.
- ► (P₂) fits model (P) with $\mathbb{V} = \mathbb{E}^{p}, f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x} - \mathbf{d}||^{2}, g(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{p}) = \sum_{i=1}^{p} \delta_{C_{i}}(\mathbf{x}_{i})$ and $\mathcal{A} : \mathbb{E} \to \mathbb{V}, \mathcal{A}(\mathbf{z}) = (\underbrace{\mathbf{z}, \mathbf{z}, ..., \mathbf{z}}_{p \text{ times}})$
- $\operatorname{argmax}_{\mathbf{v}} \{ \langle \mathbf{v}, \mathbf{x} \rangle f(\mathbf{x}) \} = \mathbf{v} + \mathbf{d} \text{ for any } \mathbf{v} \in \mathbb{E};$
- $\bullet \|\mathcal{A}\|^2 = p;$
- *σ* = 1;
- $\mathcal{A}^{T}(\mathbf{y}) = \sum_{i=1}^{p} y_i$ for any $\mathbf{y} \in \mathbb{E}^{p}$;
- ▶ $\operatorname{prox}_{Lg}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p) = (P_{C_1}(\mathbf{v}_1), P_{C_2}(\mathbf{v}_2), \dots, P_{C_p}(\mathbf{v}_p))$ for any $\mathbf{v} \in \mathbb{E}^p$.

DPG and FDPG for Solving (P_2)

Algorithm 3 [DPG for solving
$$(P_2)$$
]
Initialization: $L \ge p, \mathbf{y}^0 \in \mathbb{E}^p$.
General Step $(k \ge 0)$:
(a) $\mathbf{x}^k = \sum_{i=1}^p \mathbf{y}_i^k + \mathbf{d}$;
(b) $\mathbf{y}_i^{k+1} = \mathbf{y}_i^k - \frac{1}{L}\mathbf{x}^k + \frac{1}{L}P_{C_i}(\mathbf{x}^k - L\mathbf{y}_i^k), i = 1, 2, ..., p$.

Algorithm 4 [FDPG for solving (P₂)] Initialization: $L \ge p, \mathbf{w}^0 = \mathbf{y}^0 \in \mathbb{E}^p, t_0 = 1.$ General Step ($k \ge 0$): (a) $\mathbf{u}^k = \sum_{i=1}^p \mathbf{w}^k_i + \mathbf{d};$ (b) $\mathbf{y}^{k+1}_i = \mathbf{w}^k_i - \frac{1}{L}\mathbf{u}^k + \frac{1}{L}P_{C_i}(\mathbf{u}^k - L\mathbf{w}^k_i),$ i = 1, 2, ..., p;(c) $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2};$ (d) $\mathbf{w}^{k+1} = \mathbf{y}^{k+1} + \left(\frac{t_k-1}{t_{k+1}}\right)(\mathbf{y}^{k+1} - \mathbf{y}^k).$

Orthogonal Projection onto a Polyhedral Set Revisited

- Algorithm 4 can also be used to find an orthogonal projection of a point d ∈ ℝⁿ onto the polyhedral set C = {x ∈ ℝⁿ : Ax ≤ b}, where A ∈ ℝ^{p×n}, b ∈ ℝ^p.
- ► *C* can be written as $C = \bigcap_{i=1}^{p} C_i$, where $C_i = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{x} \le b_i\}$ with $\mathbf{a}_1^T, \mathbf{a}_2^T, \dots, \mathbf{a}_p^T$ being the rows of **A**.

$$\blacktriangleright P_{C_i}(\mathbf{x}) = \mathbf{x} - \frac{[\mathbf{a}_i^T \mathbf{x} - b_i]_+}{\|\mathbf{a}_i\|^2} \mathbf{a}_i.$$

Algorithm 5 [FDPG for solving (P₁)]
Initialization:
$$L \ge p, \mathbf{w}^0 = \mathbf{y}^0 \in \mathbb{E}^p, t_0 = 1.$$

General Step ($k \ge 0$):
(a) $\mathbf{u}^k = \sum_{i=1}^p \mathbf{w}_i^k + \mathbf{d};$
(b) $\mathbf{y}_i^{k+1} = -\frac{1}{L||\mathbf{a}_i||^2} [\mathbf{a}_i^T (\mathbf{u}^k - L\mathbf{w}_i^k) - b_i]_+ \mathbf{a}_i, i = 1, 2, ..., p;$
(c) $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2};$
(d) $\mathbf{w}^{k+1} = \mathbf{y}^{k+1} + (\frac{t_k - 1}{t_{k+1}}) (\mathbf{y}^{k+1} - \mathbf{y}^k).$

Comparison Between DPG and FDPG – Numerical Example

- ► Consider the problem of projecting the point (0.5, 1.9)^T onto a dodecagon a regular polygon with 12 edges represented as the intersection of 12 half-spaces.
- ► The first 10 iterations of the DPG (Algorithm 3) and FDPG (Algorithm 4/5) methods with L = p = 12 can be seen below.

Example 2: One-Dimensional Total Variation Denoising

$$(P_3) \quad \min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \frac{1}{2} \|\mathbf{x} - \mathbf{d}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_1 \right\},$$

- Fits model (P) with $\mathbb{E} = \mathbb{R}^n, \mathbb{V} = \mathbb{R}^{n-1}, f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{d}\|^2 (\sigma = 1), g(\mathbf{y}) = \lambda \|\mathbf{y}\|_1, \ \mathcal{A}(\mathbf{x}) \equiv \mathbf{D}\mathbf{x}$
- $\underset{\mathbf{x}}{\operatorname{argmax}}\{\langle \mathbf{v}, \mathbf{x} \rangle f(\mathbf{x})\} = \mathbf{v} + \mathbf{d} \text{ for any } \mathbf{v} \in \mathbb{E};$
- ▶ $\|A\|^2 = \|\mathbf{D}\|_{2,2}^2 \le 4;$
- *σ* = 1;
- $\mathcal{A}^{\mathsf{T}}(\mathbf{y}) = \mathbf{D}^{\mathsf{T}}\mathbf{y}$ for any $\mathbf{y} \in \mathbb{R}^{n-1}$;
- ► $\operatorname{prox}_{Lg}(\mathbf{y}) = \mathcal{T}_{\lambda L}(\mathbf{y}).$

Example 3 Contd.

Algorithm 6 [DPG for solving (P₃)] ▶ Initialization: $\mathbf{v}^0 \in \mathbb{R}^{n-1}$. • General Step (k > 0): (a) $\mathbf{x}^k = \mathbf{D}^T \mathbf{v}^k + \mathbf{d}$: (b) $\mathbf{v}^{k+1} = \mathbf{v}^k - \frac{1}{4}\mathbf{D}\mathbf{x}^k + \frac{1}{4}\mathcal{T}_{4\lambda}(\mathbf{D}\mathbf{x}^k - 4\mathbf{v}^k)$ **Algorithm 7** [FDPG for solving (P₃)] lnitialization: $\mathbf{w}^0 = \mathbf{v}^0 \in \mathbb{R}^{n-1}$, $t_0 = 1$. • General Step (k > 0): (a) $\mathbf{u}^k = \mathbf{D}^T \mathbf{w}^k + \mathbf{d}$: (b) $\mathbf{y}^{k+1} = \mathbf{w}^k - \frac{1}{4}\mathbf{D}\mathbf{u}^k + \frac{1}{4}\mathcal{T}_{4\lambda}(\mathbf{D}\mathbf{u}^k - 4\mathbf{w}^k);$ (c) $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2};$ (d) $\mathbf{w}^{k+1} = \mathbf{y}^{k+1} + \left(\frac{t_k-1}{t_{k+1}}\right) (\mathbf{y}^{k+1} - \mathbf{y}^k).$

Numerical Example

▶ *n* = 1000

b d is a noisy measurement of a step function.

Numerical Example Contd.

▶ 100 iterations of Algorithms 6 (DPG) and 7 (FDPG) initialized with $y^0 = 0$.

 Objective function values of the DPG and FDPG methods after 100 iterations are 9.1667 and 8.4621 respectively; the optimal value is 8.3031.

Amir Beck

Proximal-Based Methods

The Dual Block Proximal Gradient Method

The Model

$$(Q) \quad \min_{\mathbf{x}\in\mathbb{E}}\left\{f(\mathbf{x})+\sum_{i=1}^{p}g_{i}(\mathbf{x})\right\}.$$

Underlying Assumptions.

(A) $f : \mathbb{E} \to (-\infty, +\infty]$ is proper closed and σ -strongly convex ($\sigma > 0$). (B) $g_i : \mathbb{E} \to (-\infty, +\infty]$ is proper closed and convex for any $i \in \{1, 2, ..., p\}$. (C) $\operatorname{ri}(\operatorname{dom}(f)) \cap (\bigcap_{i=1}^{p} \operatorname{ri}(\operatorname{dom}(g_i))) \neq \emptyset$. Problem (Q) fits model (P) with $\mathbb{V} = \mathbb{E}^{p}, g(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_p) = \sum_{i=1}^{p} g_i(\mathbf{x}_i), \mathcal{A}(\mathbf{z}) = (\mathbf{z}, \mathbf{z}, ..., \mathbf{z}).$

$$p ext{ times }$$

• $\|A\|^2 = p;$

•
$$\mathcal{A}^{\mathcal{T}}(\mathbf{y}) = \sum_{i=1}^{p} y_i$$
 for any $\mathbf{y} \in \mathbb{E}^{p}$;

 $\blacktriangleright \operatorname{prox}_{Lg}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{\rho}) = (\operatorname{prox}_{Lg_1}(\mathbf{v}_1), \operatorname{prox}_{Lg_2}(\mathbf{v}_2), \dots, \operatorname{prox}_{Lg_{\rho}}(\mathbf{v}_{\rho}))$

FDPG for Solving (Q)

Algorithm 9 [FDPG for solving (Q)] Initialization: $\mathbf{w}^0 = \mathbf{y}^0 \in \mathbb{E}^p$, $t_0 = 1$. General Step $(k \ge 0)$: (a) $\mathbf{u}^k = \operatorname*{argmax}_{\mathbf{u}\in\mathbb{E}} \left\{ \left\langle \mathbf{u}, \sum_{i=1}^p \mathbf{w}_i^k \right\rangle - f(\mathbf{u}) \right\};$ (b) $\mathbf{y}_i^{k+1} = \mathbf{w}_i^k - \frac{\sigma}{p} \mathbf{u}^k + \frac{\sigma}{p} \operatorname{prox}_{\frac{p}{\sigma}g_i} (\mathbf{u}^k - \frac{p}{\sigma} \mathbf{w}_i^k), i = 1, 2, \dots, p;$ (c) $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2};$ (d) $\mathbf{w}^{k+1} = \mathbf{y}^{k+1} + \left(\frac{t_k-1}{t_{k+1}}\right) (\mathbf{y}^{k+1} - \mathbf{y}^k).$

The Dual Block Proximal Gradient Method

- A major disadvantage of Algorithm 9 is the stepsize it uses.
- A way to circumvent this drawback is to employ a dual block proximal gradient method.
- ► A dual problem to (Q):

$$(DQ) \quad q_{\text{opt}} = \max_{\mathbf{y} \in \mathbb{B}^p} \left\{ -f^*(\sum_{i=1}^p \mathbf{y}_i) - \sum_{i=1}^p \underbrace{g_i^*(-\mathbf{y}_i)}_{G_i(\mathbf{y}_i)} \right\}.$$

Suppose that the current point is y^k = (y₁^k, y₂^k, ..., y_p^k). At each iteration we pick an index *i* according to some rule and perform a proximal gradient step on *i*th block:

$$\mathbf{y}_i^{k+1} = \operatorname{prox}_{\sigma G_i} \left(\mathbf{y}_i^k - \sigma \nabla f^* (\sum_{j=1}^p \mathbf{y}_j^k) \right).$$

Dual Representation

The Dual Block Proximal Gradient (DBPG) Method – dual representation

▶ Initialization: pick $\mathbf{y}^0 = (\mathbf{y}_1^0, \mathbf{y}_2^0, \dots, \mathbf{y}_p^0) \in \mathbb{E}^p$.

Lemma. The relation $\mathbf{y}_i = \operatorname{prox}_{\frac{1}{L}G_i} \left(\mathbf{v}_i - \frac{1}{L} \nabla f^* (\sum_{j=1}^p \mathbf{v}_j) \right)$ holds if and only if $\mathbf{y}_i = \mathbf{v}_i - \frac{1}{L} \mathbf{\tilde{x}} + \frac{1}{L} \operatorname{prox}_{Lg_i} \left(\mathbf{\tilde{x}} - L \mathbf{v}_i \right)$, where $\mathbf{\tilde{x}} = \operatorname{argmax} \left\{ \langle \mathbf{x}, \sum_{j=1}^p \mathbf{u}_j \rangle - \mathbf{f}(\mathbf{x}) \right\}$

where
$$\tilde{\mathbf{x}} = \operatorname*{argmax}_{\mathbf{x} \in \mathbb{E}} \left\{ \langle \mathbf{x}, \sum_{j=1}^{p} \mathbf{v}_{j} \rangle - f(\mathbf{x}) \right\}.$$

Primal Representation

The Dual Block Proximal Gradient (DBPG) Method – primal representation

Initialization. pick
$$\mathbf{y}^0 = (\mathbf{y}_1^0, \mathbf{y}_2^0, \dots, \mathbf{y}_p^0) \in \mathbb{E}$$
.
General step: for any $k = 0, 1, 2, \dots$ execute the following steps:
(a) pick $i_k \in \{1, 2, \dots, p\}$.
(b) set $\mathbf{x}^k = \underset{\mathbf{x} \in \mathbb{E}}{\operatorname{argmax}} \left\{ \langle \mathbf{x}, \sum_{j=1}^{p} \mathbf{y}_j^k \rangle - f(\mathbf{x}) \right\}$.
(c) set $\mathbf{y}_j^{k+1} = \left\{ \begin{array}{l} \mathbf{y}_{i_k}^k - \sigma \mathbf{x}^k + \sigma \operatorname{prox}_{g_i/\sigma} \left(\mathbf{x}^k - \mathbf{y}_{i_k}^k / \sigma \right), \quad j = i_k, \\ \mathbf{y}_j^k, \quad j \neq i_k. \end{array} \right.$

Possible stepsize strategies.

- cyclic. $i_k = (k \mod p) + 1$.
- ► randomized. i_k is randomly picked from {1, 2, ..., p} by a uniform distribution.

Rates of Convergence of the Cyclic and Randomized DBPG Methods

- O(1/k) rates of convergence of the sequences of dual objective function values follow by the corresponding results on the block proximal gradient method.
- O(1/k) rates of the primal sequence follow by the primal-dual relation.

Cyclic:

(a)
$$q_{\text{opt}} - q(\mathbf{y}^{pk}) \le \max\left\{ \left(\frac{1}{2}\right)^{(k-1)/2} (q_{\text{opt}} - q(\mathbf{y}^0)), \frac{8p(p+1)^2 R^2}{\sigma(k-1)} \right\}.$$

(b) $\|\mathbf{x}^{pk} - \mathbf{x}^*\|^2 \le \frac{2}{\sigma} \max\left\{ \left(\frac{1}{2}\right)^{(k-1)/2} (q_{\text{opt}} - q(\mathbf{y}^0)), \frac{8p(p+1)^2 R^2}{\sigma(k-1)} \right\}.$

Randomized:

(a)
$$q_{\text{opt}} - \mathsf{E}_{\xi_k}(q(\mathbf{y}^{k+1})) \le \frac{p}{p+k+1} \left(\frac{1}{2\sigma} \|\mathbf{y}^0 - \mathbf{y}^*\|^2 + q_{\text{opt}} - q(\mathbf{y}^0) \right).$$

(b) $\mathsf{E}_{\xi_k} \|\mathbf{x}^{k+1} - \mathbf{x}^*\|^2 \le \frac{2p}{\sigma(p+k+1)} \left(\frac{1}{2\sigma} \|\mathbf{y}^0 - \mathbf{y}^*\|^2 + q_{\text{opt}} - q(\mathbf{y}^0) \right).$

THANK YOU FOR YOUR ATTENTION