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Tutorial Overview

The tutorial is all about first order methods, specifically those based on proximal
computations

I Background: extended real-valued functions, subgradients, conjugate
functions, the proximal operator

I proximal gradient

I fast proximal gradient (FISTA)

I smoothing

I block proximal gradient

I dual proximal gradient
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Complement of Tutorial Overview

Unfortunately, the following important topics are not included:

I primal and dual projected subgradient

I non-Euclidean algorithms (mirror descent, non-Euclidean proximal gradient)

I conditional gradient

I alternating minimization

I ADMM
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Underlying Spaces

I We will assume that the underlying vector spaces, usually denoted by V or E,
are finite dimensional real inner product spaces with endowed inner product
〈·, ·〉 and endowed norm ‖ · ‖.

Euclidean space: a finite dimensional real vector space equipped
with an inner product 〈·, ·〉 endowed with the norm ‖x‖ =

√
〈x, x〉,

which is also called the Euclidean norm.

I Except for one case, we will always assume that the underlying vector space
is Euclidean
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Extended Real-Valued Functions
I D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and

optimization (2013).

I R. T. Rockafellar, Convex analysis (1970).
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Extended Real-Valued Functions
I An extended real-valued function is a function defined over the entire

underlying space that can take any real value, as well as the infinite values
−∞ and ∞.

I Infinite values arithmetic:
a +∞ = ∞ + a = ∞ (−∞ < a < ∞),

a −∞ = −∞ + a = −∞ (−∞ < a < ∞),
a · ∞ = ∞ · a = ∞ (0 < a < ∞),

a · (−∞) = (−∞) · a = −∞ (0 < a < ∞),
a · ∞ = ∞ · a = −∞ (−∞ < a < 0),

a · (−∞) = (−∞) · a = ∞ (−∞ < a < 0),
0 · ∞ = ∞ · 0 = 0 · (−∞) = (−∞) · 0 = 0.

I For an extended real-valued function f : E→ [−∞,∞], the effective domain
or just the domain is the set

dom(f ) = {x ∈ E : f (x) <∞}.

I For any subset C ⊆ E, the indicator function of C is

δC (x) =

{
0 x ∈ C ,
∞ x /∈ C .
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Closedness

I The epigraph of an extended real-valued function f : E→ [−∞,∞] is defined
by

epi(f ) = {(x, y) : f (x) ≤ y , x ∈ E, y ∈ R} ⊆ E× R.

I A function f : E→ [−∞,∞] is called proper if it does not attain the value
−∞ and there exists at least one x̂ ∈ E such that f (x̂) <∞, meaning that
dom(f ) 6= ∅.

I A function f : E→ [−∞,∞] is called closed if its epigraph is closed.

Theorem. The indicator function δC is closed if and only if C is
closed.

Proof.
epi(f ) = {(x, y) ∈ E× R : δC (x) ≤ y} = C × R+,

which is evidently closed if and only if C is closed. �
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Example

f (x) =

{
1
x , x > 0,
∞, else.

f is closed.
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Lower Semicontinuity

Definition

I A function f : E→ [−∞,∞] is called lower semicontinuous at x ∈ E if

f (x) ≤ liminf
n→∞

f (xn),

for any sequence {xn}n≥1 ⊆ E for which xn → x as n→∞.

I A function f : E→ [−∞,∞] is called lower semicontinuous if it is lower
semicontinuous at each point in E.

Theorem. The following claims are equivalent:

(i) f is lower semicontinuous.

(ii) f is closed.

(iii) for any α ∈ R, the level set

Lev(f , α) = {x ∈ Rn : f (x) ≤ α}

is closed.
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Operations Preserving Closedness

Theorem.

(a) Let A : E→ V be a linear transformation and b ∈ V, and let
f : V→ (−∞,∞] be closed. Then the function g : E→ [−∞,∞] given by

g(x) = f (A(x) + b)

is closed.

(b) Let f1, f2, . . . , fm : E→ (−∞,∞] be extended real-valued closed functions,
and let α1, α2, . . . , αm ∈ R+. Then the function f =

∑m
i=1 αi fi is closed.

(c) Let fi : E→ (−∞,∞], i ∈ I be extended real-valued closed functions, where
I is a given index set. Then the function

f (x) = max
i∈I

fi (x).

is closed.
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Weierstrass theorem for closed functions

Theorem. Let f : E → (−∞,∞] be a proper closed function, and assume
that C is a compact set satisfying C ∩ dom(f ) 6= ∅. Then

(a) f is bounded below over C .

(b) f attains a minimizer over C .

I A proper function f : E→ (−∞,∞] is called coercive if

lim
‖x‖→∞

f (x) =∞.

Theorem. (attainment under coerciveness) Let f : E → (−∞,∞] be a
closed proper and coercive function and let S ⊆ E be a nonempty closed
set satisfying S ∩ dom(f ) 6= ∅. Then f attains a minimizer over S .
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Convex Extended Real-Valued Functions

I An extended real-valued function is called convex if epi(f ) is convex.

I f : E→ (−∞,∞] is convex ⇔ dom(f ) is convex and the real-valued function
f̃ : dom(f )→ R which is the restriction of f to dom(f ) is convex over
dom(f ).

I Result: A proper function f : E→ (−∞,∞] is convex iff

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) for all λ ∈ [0, 1], x, y ∈ E

I Jensen’s inequality

f

(
k∑

i=1

λixi

)
≤

k∑
i=1

λi fi (xi )

for any λ ∈ ∆k (k being an arbitrary positive integer), x1, x2, . . . , xk ∈ E.
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Operations Preserving Convexity

Theorem.

(a) Let A : E→ V be a linear transformation from E to V and b ∈ V, and
let f : V→ (−∞,∞] be convex. Then g : E→ (−∞,∞] given by

g(x) = f (A(x) + b)

is convex.

(b) Let f1, f2, . . . , fm : E→ (−∞,∞] be convex, and let
α1, α2, . . . , αm ∈ R+. Then the function

∑m
i=1 αi fi is convex.

(c) Let fi : E→ (−∞,∞], i ∈ I be convex, where I is a given index set.
Then the function

f (x) = max
i∈I

fi (x)

is convex.
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Closedness Vs. Continuity

Closed functions are not necessarily continuous, but...

I If f : E→ [−∞,∞] is continuous over dom(f ), which is assumed to be
closed, then it is closed.

I 1D closed and convex functions are always continuous over their domain.

I Not correct for multi-dimensional functions...

Example: the l0-norm function f : Rn → R given by

f (x) = ‖x‖0 ≡ #{i : xi 6= 0}.

f is closed but not continuous.
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Support Functions
I Let C ⊆ E be nonempty. Then the support function of C ,
σC : E→ (−∞,∞] is given by

σC (y) ≡ max
y∈C
〈y, x〉.

Theorem. Let C ⊆ E be a nonempty set. Then σC is a closed and convex
function.

Proof. σC is a maximum of convex functions.
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Examples of Support Functions

C σC (y) assumptions Example No.

{b1, b2, . . . , bn} maxi=1,2,...,n〈bi , y〉 bi ∈ E 1

K δK◦(y) K – cone 2

Rn
+ δRn

−
(y) E = Rn 3

∆n max{y1, y2, . . . , yn} E = Rn 4

{x ∈ Rn : Ax ≤ 0} δ{ATλ:λ∈Rm
+}

(y) E = Rn, A ∈
Rm×n

5

{x ∈ Rn : Bx = b} 〈y, x0〉+ δRange(BT )
(y) E = Rn, B ∈

Rm×n, b ∈
Rm, Bx0 = b

6

B‖·‖[0, 1] ‖y‖∗ ‖ · ‖ - arbitrary
norm

7
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A Discontinuous Closed and Convex Function
If

C =

{
(x1, x2) : x1 +

x2
2

2
≤ 0

}
.

Then

σC (y) =


y2

2

2y1
, y1 > 0

0, y1 = y2 = 0
∞, else.

y
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y 2

0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Amir Beck Proximal-Based Methods 17 / 181



Subgradients
I D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and

optimization (2013).

I J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization
(2006).

I J. B. Hiriart-Urruty and C. Lemarechal. Convex analysis and minimization
algorithms. I (1996).

I Y. Nesterov. Introductory lectures on convex optimization (2004).

I R. T. Rockafellar, Convex analysis (1970).
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Subgradients

I Definition: Let f : E→ (−∞,∞] be a proper function, and let x ∈ dom(f ).
A vector g ∈ E is called a subgradient of f at x if

f (y) ≥ f (x) + 〈g, y − x〉 for all y ∈ E.

I The set of all subgradients of f at x is called the subdifferential of f at x and
is denoted by ∂f (x):

∂f (x) ≡ {g ∈ E : f (y) ≥ f (x) + 〈g, y − x〉 for all y ∈ E}.

When x /∈ dom(f ), we define ∂f (x) = ∅.
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Closedness and Convexity of the Subdifferential Set

Theorem. Let f : E → (∞,∞] be an extended real-valued function. Then
the set ∂f (x) is closed and convex for any x ∈ E.

Proof. For any x ∈ E,

∂f (x) =
⋂
y∈E

Hy,

where Hy = {g ∈ E : f (y) ≥ f (x) + 〈g, y − x〉} . Since the sets Hy are half-spaces,
and in particular, closed and convex, it follows that ∂f (x) is closed and convex. �
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Subdifferentiability
I If ∂f (x) 6= ∅, f it is called subdifferentiable at x.
I

dom(∂f ) ≡ {x ∈ E : ∂f (x) 6= ∅} .
Example:

f (x) =

{
−
√
x , x ≥ 0,

∞, else.
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1

x
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Existence and Boundedness of ∂f (x)

Theorem. Let f : E→ (−∞,∞] be a proper convex function.

I If x̃ ∈ int(dom(f )), then ∂f (x̃) is nonempty and bounded.

I If x̃ ∈ ri(dom(f )), then ∂f (x̃) is nonempty.

Corollary. Let f : E→ R be a convex function. Then f is subdifferentiable
over E.

Theorem. Let f : E→ (−∞,∞] be a proper convex function, and assume
that X ⊆ int(dom(f )) is nonempty and compact. Then Y =

⋃
x∈X ∂f (x)

is nonempty and bounded.
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The Directional Derivative

I Let f : E→ (−∞,∞] be a proper extended real-valued function and let
x ∈ int(dom(f )). Suppose that 0 6= d ∈ E. The directional derivative at x in
the direction 0 6= d ∈ E, if exists, is defined by

f ′(x; d) = lim
α→0+

f (x + αd)− f (x)

α
.

Theorem. Let f : E → (−∞,∞] be a proper convex function, and let
x ∈ int(dom(f )). Then for any d ∈ E, the directional derivative f ′(x; d)
exists.
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Differentiability

Definition. For a given function f : E → (−∞,∞], and x ∈ int(dom(f )),
we say that f is differentiable at x if there exists g ∈ E such that

f (x + h) = f (x) + 〈g,h〉+ o(‖h‖).

In other words,limh→0
f (x+h)−f (x)−〈g,h〉

‖h‖ = 0.

g is called the gradient, and is denoted by ∇f (x)

Theorem. Let f : E → (−∞,∞], and suppose that f is differentiable at
x ∈ int(dom f ). Then for any d 6= 0

f ′(x; d) = 〈∇f (x),d〉.

Proof. 0 = limα→0+
f (x+αd)−f (x)−〈∇f (x),αd〉

‖αd‖ = f ′(x;d)−〈∇f (x),d〉
‖d‖ , and hence

f ′(x; d) = 〈∇f (x),d〉. �
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The Subdifferential at Differentiability Points

Theorem. Let f : E → (−∞,∞] be a proper convex function, and let x ∈
int(dom(f )). If f is differentiable at x, then ∂f (x) = {∇f (x)}. Conversely,
if f has a unique subgradient at x, then f is differentiable at x and ∂f (x) =
{∇f (x)}.

Example: f (x) = ‖x‖2 (E = Rn). Then ∂f (x) =

{ {
x
‖x‖2

}
, x 6= 0,

B‖·‖2
[0, 1], x = 0.
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What is the Gradient?

I Example 1: E = Rn with 〈x, y〉 ≡ xTy: ∇f (x) = Df (x)

Df (x) ≡


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

 .

I Example 2: E = Rn with 〈x, y〉 = xTHy with H ∈ Sn++:
∇f (x) = H−1Df (x).
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Subdifferential Calculus

Theorem. Let f1, f2 : Rn → (−∞,∞] be proper extended real-valued convex
functions. Let x ∈ dom(f1) ∩ dom(f2). Then

(a) The following inclusion holds (weak result):

∂f1(x) + ∂f2(x) ⊆ ∂(f1 + f2)(x)

(b) If in addition either x ∈ int(dom(f1)) ∩ int(dom(f2)), then (strong
result):

∂f1(x) + ∂f2(x) = ∂(f1 + f2)(x).
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Sum Rule of Subdifferential Calculus - General Result

Theorem. Let f1, f2, . . . , fm be proper convex functions and assume that⋂m
i=1 ri(dom fi ) 6= ∅. Then for any x

∂f (x) = ∂f1(x) + ∂f2(x) + . . .+ fm(x)
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Subdifferential Calculus - Affine Change of Variables
Theorem. Let f : E→ (−∞,∞] be a proper convex function and A : V→
E be a linear transformation. Let h(x) = f (A(x) + b) with b ∈ E. Assume
that h is proper:

dom(h) = {x ∈ V : A(x) + b ∈ dom(f )} 6= ∅.

(a) (weak affine transformation rule of subdifferential calculus) For
any x ∈ dom(h),

AT (∂f (A(x) + b)) ⊆ ∂h(x).

(b) (affine transformation rule of subdifferential calculus) If
x ∈ int(dom(h)) and A(x) + b ∈ int(dom(f )), then

∂h(x) = AT (∂f (A(x) + b)).
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Chain Rule of Subdifferential Calculus

Theorem Let f : E→ R be a convex function and let g : R→ R be a non-
decreasing convex function. Let x ∈ E and suppose that g is differentiable
at the point f (x). Let h = g ◦ f . Then

∂h(x) = g ′(f (x))∂f (x).
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Max Rule of Subdifferential Calculus

Lemma. Let f1, f2, . . . , fm : E → (−∞,∞] be proper extended real-valued
convex functions and let

f (x) ≡ max{f1(x), f2(x), . . . , fm(x)}.

Let x ∈
⋂m

i=1 int(dom(fi )). Then

∂f (x) = conv

 ⋃
i∈I (x)

∂fi (x)

 ,

where
I (x) = {i ∈ {1, 2, . . . ,m} : fi (x) = f (x)}.
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Lipschitz Continuity and Boundedness of Subgradients

Theorem.Let f : E→ (−∞,∞] be a proper and convex function. Suppose
that X ⊆ int(dom f ). Consider the following two claims:

(i) |f (x)− f (y)| ≤ L‖x− y‖ for any x, y ∈ X ;

(ii) ‖g‖∗ ≤ L for any g ∈ ∂f (x), x ∈ X .

Then

(a) the implication (ii)⇒ (i) holds;

(b) if X is open then (i) holds if and only if (ii) holds.
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Fermat’s Optimality Condition

Theorem. Let f : E → (−∞,∞] be an extended real-valued convex func-
tion. Then

x∗ ∈ argmin{f (x) : x ∈ E} (1)

if and only if
0 ∈ ∂f (x∗)

Proof. 0 ∈ ∂f (x∗) is satisfied iff

f (x) ≥ f (x∗) + 〈0, x− x∗〉 for any x ∈ dom(f ),

which is the the same as (1).
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Fermat-Weber Problem

Given m different points in Rd , A = {a1, a2, . . . , am} (“anchors”) and m positive
weights ω1, ω2, . . . , ωm, the Fermat-Weber problem is given by

(FW) min
x∈Rd

{
f (x) ≡

m∑
i=1

ωi‖x− ai‖2

}
.

I

∂f (x) =
m∑
i=1

∂fi (x) =

{ ∑m
i=1 ωi

x−ai

‖x−ai‖2
, x /∈ A,∑m

i=1,i 6=j ωi
x−ai

‖x−ai‖2
+ B[0, ωj ], x = aj(j ∈ [m]).

I By Fermat’s optimality optimality condition, x∗ is an optimal solution iff
0 ∈ ∂f (x∗), meaning iff

I x∗ /∈ A and
∑m

i=1 ωi
x∗−ai

‖x∗−ai‖2
= 0 or for some j ∈ {1, 2, . . . ,m}

x∗ = aj and
∥∥∥∑m

i=1,i 6=j ωi
x∗−ai

‖x∗−ai‖2

∥∥∥
2
≤ ωj .

[Sturm, 1884] [Weiszfeld, 1937]
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Optimality Conditions for the Composite Model (Mixed
Convex/Nonconvex)

Theorem. Let f : E → (−∞,∞] be proper, and let g : E → (−∞,∞] be
a proper convex function such that dom(g) ⊆ int(dom(f )). Consider the
problem

(P) min f (x) + g(x).

(a) (necessary condition) If x∗ ∈ dom(g) is a local optimal solution of
(P), and f is differentiable at x∗, then

−∇f (x∗) ∈ ∂g(x∗). (2)

(b) (necessary and sufficient condition for convex problems)
Suppose that f is convex. If f is differentiable at x∗ ∈ dom(g), then
x∗ is a global optimal solution of (P) if and only if (2) is satisfied.
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Stationarity in Composite Models

(P) min f (x) + g(x).

I f : E→ (−∞,∞] proper.
I g : E→ (−∞,∞] proper convex.
I dom(g) ⊆ int(dom(f )).

Definition A point x∗ ∈ dom g in which f is differentiable is called a sta-
tionarity point of (P) if −∇f (x∗) ∈ ∂g(x∗)

Example: If g(x) = δC (x) for convex C , then stationarity is the same as

〈∇f (x∗), x− x∗〉 ≥ 0

Example: min f (x) + λ‖x‖1 (f : Rn → R), then stationarity is

∂f (x∗)

∂xi

 = −λ, x∗i > 0,
= λ, x∗i < 0,
∈ [−λ, λ], x∗i = 0.
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Conjugate Functions
I D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and

optimization (2013).

I J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization
(2006).

I J. B. Hiriart-Urruty and C. Lemarechal. Convex analysis and minimization
algorithms. I (1996).

I R. T. Rockafellar, Convex analysis (1970).
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Conjugate Functions

Definition. Let f : E→ (−∞,∞] be a proper extended real-valued function.
The function f : E→ [−∞,∞] defined by

f ∗(y) = max
x∈E
{〈y, x〉 − f (x)}.

is called the conjugate function of f .

Result: Conjugate functions are always closed and convex (regardless of the
properties of f )
Example: f = δC , where C ⊆ E is nonempty. Then for any y ∈ E

f ∗(y) = max
x∈E
{〈y, x〉 − δC (x)} = max

x∈C
〈y, x〉 = σC (y).

δ∗C = σC .
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The Biconjugate

The conjugacy operation can be invoked twice resulting with the biconjugacy
operation. Specifically, for a function f we define

f ∗∗(x) = max
y∈E
〈x, y〉 − f ∗(y)

Theorem (f ≥ f ∗∗). Let f : E → [−∞,∞] be an extended real-valued
function. Then f (x) ≥ f ∗∗(x) for any x ∈ E.

Theorem. Let f : E → (−∞,∞] be a closed and proper extended real-
valued function. Then f ∗∗ = f .
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Fenchel’s Inequality

Theorem. Let f : E→ (−∞,∞] be an extended real-valued proper function.
Then for any x ∈ E, y ∈ E

f (x) + f ∗(y) ≥ 〈y, x〉.
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Simple Calculus Rules

function definition conjugate
g(x1, . . . , xm) =

∑m
i=1 fi (xi ) g∗(y1, . . . , ym) =

∑m
i=1 f

∗
i (yi )

g(x) = αf (x) g∗(y) = αf ∗(y/α)
g(x) = αf (x/α) g∗(y) = αf ∗(y)

f (A(x− a)) + 〈b, x〉+ c f ∗
(
(AT )−1(y − b)

)
+ 〈a, y〉 − c − 〈a,b〉
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Conjugates of Simple Functions

function (f ) dom f conjugate (f ∗) assumptions

1
2
xTAx + bTx + c Rn 1

2
(y−b)TA−1(y−b)−

c
A � 0,A ∈ Rn×n, b ∈
Rn, c ∈ R∑n

i=1 xi log xi Rn
+

∑n
i=1 e

yi−1 –∑n
i=1 xi log xi ∆n log

(∑n
i=1 e

yi
)

–

log
(∑n

i=1 e
xi
)

Rn ∑n
i=1 yi log yi

(dom f ∗ = ∆n)
–

δC (x) C σC (x) ∅ 6= C arbitrary

σC (x) Rn δC (x) ∅ 6= C closed, convex

‖x‖ Rn δB‖·‖∗ [0,1] ‖ · ‖ arbitrary norm

−
√

1− ‖x‖2 B‖·‖[0, 1]
√
‖y‖2
∗ + 1 ‖ · ‖ arbitrary norm

1
p
|x |p R 1

q
|y |q p > 1, 1

p
+ 1

q
= 1

1
2
‖x‖2 Rn 1

2
‖y‖2
∗ ‖ · ‖ arbitrary norm
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Conjugate Subgradient Theorem

Theorem. Let f : Rn → (−∞,∞] be a proper convex extended real-valued
function. The following two claims are equivalent for any x ∈ E, y ∈ E:

(i) 〈x, y〉 = f (x) + f ∗(y).

(ii) y ∈ ∂f (x).

If, in addition f is closed, then (i) and (ii) are equivalent to

(iii) x ∈ ∂f ∗(y).

I If f is proper closed and convex, the conjugate subgradient theorem can be
written as

∂f ∗(y) = argmax
x
{〈y, x〉 − f (x)} ,

∂f (x) = argmax
y
{〈x, y〉 − f ∗(y)}
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Fenchel’s Duality Theorem

(P) min
x∈E

f (x) + g(x).

Lagrangian duality:
I minx,z∈E{f (x) + g(z) : x = z}
I Lagrangian:

L(x, z; y) = f (x) + g(z) + 〈y, z− x〉 = − [〈y, x〉 − f (x)]− [〈−y, z〉 − g(z)] .
I Dual objective function:q(y) = minx,z L(x, z; y) = −f ∗(y)− g∗(−y)

Fenchel’s dual problem:

(D) max
y∈E∗
{−f ∗(y)− g∗(−y)}.

Theorem (Fenchel’s duality theorem) Let f , g : E → (−∞,∞] be proper
convex functions. If ri(dom(f )) ∩ ri(dom(g)) 6= ∅, then

min
x∈E
{f (x) + g(x)} = max

y∈E∗
{−f ∗(y)− g∗(−y)},

and the maximum in the right-hand problem is attained whenever it is
finite.
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The Proximal Operator
I J. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc.

Math. France (1965).

I H. Bauschke and P. L. Combettes. Convex analysis and monotone operator
theory in Hilbert spaces (2011).

I P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward
backward splitting, Multiscale Model. Simul. (2005).

I N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in
Optimization (2014).
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The Proximal Operator

Definition. Given a closed, proper and convex function g , the proximal
mapping of g is defined by

proxg (x) = argmin
u∈E

{
g(u) +

1

2
‖u− x‖2

}
.
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Examples
I Constant. If f ≡ c for some c ∈ R, then

proxf (x) = argmin
u∈E

{
c +

1

2
‖u− x‖2

}
= x

The identity mapping.
I Affine. Let f (x) = 〈a, x〉+ b, where a ∈ E and b ∈ R. Then

proxf (x) = argmin
u∈E

{
〈a,u〉+ b +

1

2
‖u− x‖2

}
= x− a.

I Let f (x) = 1
2 xTAx + bTx + c , where A ∈ Sn+,b ∈ Rn and c ∈ R. The vector

proxf (x) is the solution of

min
u∈E

{
1

2
uTAu + bTu + c +

1

2
‖u− x‖2

}
.

The optimal solution is attained at u satisfying (A + I)u = x− b, and hence

proxf (x) = u = (A + I)−1(x− b).
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The Orthogonal Projection

I Definition. Given a nonempty closed and convex set C ⊆ E and x ∈ E, the
orthogonal projection operator PC : E→ C is defined by

PC (x) ≡ argmin
y∈C

‖y − x‖.

First projection theorem. Let C ⊆ E be a nonempty closed convex set.
Then PC (x) is a singleton.

Second projection theorem. Let C ⊆ E be a nonempty closed and convex
set. Let u ∈ C . Then u = PC (x) if and only if

〈x− u, y − u〉 ≤ 0 for any y ∈ C .
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Prox of Indicator = Orthogonal Projection

I If C ⊆ E is nonempty, then proxδC = PC

proxδC (x) = argmin
u∈E

{
δC (u) +

1

2
‖u− x‖2

}
= argmin

u∈C
‖u− x‖2 = PC (x).

First prox theorem. Let f : E → (−∞,∞] be a proper closed and convex
function. Then proxf (x) is a singleton for any x ∈ E.

Proof?
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Strongly Convex Functions
Definition. A function f : E → (−∞,∞] is called σ-strongly convex for a
given σ > 0, if dom(f ) is convex and the following inequality holds for any
x, y ∈ dom(f ) and λ ∈ [0, 1]:

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)− 1

2
σλ(1− λ)‖x− y‖2.

I A function is strongly convex if it is σ-strongly convex for some σ > 0.

Theorem. f : E→ (−∞,∞] is a strongly convex function if and only if the
function f (·)− σ

2 ‖ · ‖
2 is convex.

I The proof is extremely straightforward.

I The above characterization is relevant only for Euclidean spaces.

I σ-strongly convex+convex is σ-strongly convex.

Example: f (x) = 1
2 xTAx + bTx + c (A ∈ Sn,b ∈ Rn, c ∈ R) is strongly convex

with parameter λmin(A).
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First Order Characterizations of Strong Convexity

Theorem. Let f : E → (−∞,∞] be a proper closed and convex function.
Then for a given σ > 0, the following three claims are equivalent:

(i) f is σ-strongly convex.

(ii)

f (y) ≥ f (x) + 〈g, y − x〉+
σ

2
‖y − x‖2

for any x ∈ dom(∂f ), y ∈ dom(f ) and g ∈ ∂f (x).

(iii)
〈gx − gy, x− y〉 ≥ σ‖x− y‖2

for any x, y ∈ dom(∂f ) and gx ∈ ∂f (x), gy ∈ ∂f (y).
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Existence and Uniqueness of a Minimizer of Closed
Strongly Convex Functions

Theorem. Let f : E→ (−∞,∞] be a proper closed and σ-strongly convex
function (σ > 0). Then

(a) f has a unique minimizer.

(b) f (x)− f (x∗) ≥ σ
2 ‖x− x∗‖2 for all x ∈ dom(f ), where x∗ is the unique

minimizer of f .

Conclusion: the first prox theorem.

First prox theorem. Let f : E → (−∞,∞] be a proper closed and convex
function. Then proxf (x) is a singleton for any x ∈ E.

Proof.
I For any x ∈ E,

proxf (x) = argmin
u∈E

f̃ (u, x), (3)

where f̃ (u, x) = f (u) + 1
2‖u− x‖2.

I f̃ (·, x) is a proper closed and 1-strongly convex function.
I Therefore, there exists a unique minimizer to the problem in (3).
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Necessity of the Conditions in the First Prox Theorem
• When f is not convex and/or closed, the prox is not guaranteed to uniquely
exist, or even to exist at all.

g1(x) ≡ 0,

g2(x) =

{
0, x 6= 0,
−λ, x = 0,

g3(x) =

{
0, x 6= 0,
λ, x = 0.

proxg1
(x) = x ,proxg2

(x) =


{0}, |x | <

√
2λ,

{x}, |x | >
√

2λ,

{0, x}, |x | =
√

2λ.

,proxg3
(x) =

{
{x}, x 6= 0,
∅, x = 0.

I Uniquness is not guaranteed in any case.

I Existence is guaranteed whenever f is proper closed and the function
u 7→ f (u) + 1

2‖u− x‖2 is coercive.
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Basic Calculus Rules

f (x) proxf (x) assumptions∑m
i=1 fi (xi ) proxf1 (x1)× · · · × proxfm (xm)

g(λx + a) 1
λ

[
proxλ2g (a + λx)− a

]
λ 6= 0, a ∈ E, g
proper

λg(x/λ) λproxg/λ(x/λ) λ > 0, g proper

g(x) + c
2
‖x‖2 +

〈a, x〉+ γ
prox 1

c+1
g ( x−a

c+1
) a ∈ E, c >

0, γ ∈ R, g
proper

g(A(x) + b) x + 1
α
AT (proxαg (A(x) + b)−A(x)− b) b ∈ Rm,

A : V → Rm,
g closed
proper convex,
A ◦ AT = αI ,
α > 0

g(‖x‖)
proxg (‖x‖) x

‖x‖ , x 6= 0

{u : ‖u‖ = proxg (0)}, x = 0
g proper
closed convex,
dom(g) ⊆
[0,∞)
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Examples or Prox Computations

f dom f proxf assumptions
1
2 xT Ax + bT x + c Rn (A + I)−1(x− b) A ∈ Sn++, b ∈ Rn, c ∈ R

λ‖x‖ E
[

1− λ
‖x‖

]
+

x Euclidean norm, λ > 0

λ‖x‖1 Rn [|x| − λe]+ ◦ sgn(x) λ > 0

−λ
∑n

j=1 log xj Rn
++

 xj +

√
x2
j

+4λ

2

n

j=1

λ > 0

δC (x) E PC (x) C ⊆ E
λσC (x) E x− λPC (x/λ) C closed and convex
λ‖x‖ E x− λPB‖·‖∗ [0,1](x/λ) arbitrary norm

λmax{x1, x2, . . . , xn} Rn x− prox∆n
(x/λ) λ > 0

λdC (x) E x + min
{

λ
dC (x) , 1

}
(PC (x)− x) C closed convex

λ
2 dC (x)2 E λ

λ+1 PC (x) + 1
λ+1 x C closed convex
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Prox of l1-Norm
I g(x) = λ‖x‖1 (λ > 0)
I g(x) =

∑n
i=1 ϕ(xi ), where ϕ(t) = λ|t|.

I proxϕ(s) = Tλ(s), where Tλ is defined as

Tλ(y) = [|y | − λ]+sgn(y) =

 y − λ, y ≥ λ,
0, |y | < λ,
y + λ, y ≤ −λ

is the soft thresholding operator. −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

I By the separability of the l1-norm, proxg (x) = (Tλ(xj))nj=1. We expend the
definition of the soft thresholding operator and write

proxg (x) = Tλ(x) ≡ (Tλ(xj))nj=1 = [|x| − λe]+ � sgn(x).
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The Second Prox Theorem

Theorem Let g : E → (−∞,∞] be a proper, closed and convex function.
Then

(i) u = proxg (x).

(ii) x− u ∈ ∂g(u).

(iii) g(y) ≥ g(u) + 〈x− u, y − u〉 for any y ∈ E.

Proof.

I (i) is satisfied if and only if u a minimizer of the problem

min
u

{
g(u) +

1

2
‖u− x‖2

}
.

I By Fermat’s optimality condition, this is equivalent to (ii).

I The equivalence to (iii) follows by the definition of the subgradient.

Generalization of the second projection theorem!
Corollary: x is a minimizer of a closed, proper, convex function f iff x = proxf (x)
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Firm Nonexpansivity of the Prox Operator

Theorem. For any x, y ∈ E
(i) 〈x− y,proxh(x)− proxh(y)〉 ≥ ‖proxh(x)− proxh(y)‖2.

(ii) ‖proxh(x)− proxh(y)‖ ≤ ‖x− y‖.

Proof.

I Denote u = proxh(x), v = proxh(y).

I x− u ∈ ∂h(u), y − v ∈ ∂h(v).

I By the subgradient inequality

f (v) ≥ f (u) + 〈x− u, v − u〉,
f (u) ≥ f (v) + 〈y − v,u− v〉.

I Summing the above two inequalities, we obtain 〈(x−u)− (y− v),u− v〉 ≥ 0.

I Thus,〈u− v, x− y〉 ≥ ‖u− v‖2.

I (ii) follows from Cauchy-Schwarz.
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Moreau Decomposition
Theorem. Let f be a closed, proper and extended real-valued convex func-
tion. Then for any x ∈ E

proxf (x) + proxf ∗(x) = x.

Proof.
I Let x ∈ E,u = proxf (x).
I x− u ∈ ∂f (u)
I iff u ∈ ∂f ∗(x− u).
I iff x− u = proxf ∗(x).
I Thus,

proxf (x) + proxf ∗(x) = u + (x− u) = x.

A direct consequence (extended Moreau decomposition)

proxλf (x) + λproxf ∗/λ(x/λ) = x
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Prox of Support Functions

Let C be a nonempty closed and convex set, and let λ > 0. Then

proxλσC
(x) = x− λPC (x/λ).

Proof. By the extended Moreau decomposition formula

proxλσC
(x) = x− λproxλ−1σ∗C

(x/λ) = x− λproxλ−1δC
(x/λ) = x− λPC (x/λ)

Examples:

I proxλ‖·‖α(x) = x− λPB‖·‖α,∗ [0,1](x/λ). (‖ · ‖α - arbitrary norm)

I proxλ‖·‖∞(x) = x− λPB‖·‖1
[0,1](x/λ).

I proxλmax(·)(x) = x− λP∆n(x/λ).

Amir Beck Proximal-Based Methods 60 / 181



The Proximal Gradient Method
I A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm

for linear inverse problems, SIAM J. Imaging Sci. (2009).

I A. Beck and M. Teboulle, Gradient-based algorithms with applications to
signal-recovery problems, In Convex optimization in signal processing and
communications (2010)

I H. Bauschke and P. L. Combettes. Convex analysis and monotone operator
theory in Hilbert spaces (2011).

I P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward
backward splitting, Multiscale Model. Simul. (2005).

I N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in
Optimization (2014).

I J. Nutini, M. Schmidt, I. H. Laradji, M. Friendlander, and H. Koepke,
Coordinate descent converges faster with the gauss-southwell rule than
random selection, 32nd International Conference on Machine Learning (2015).
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Preliminaries – Smoothness
Definition. Let L ≥ 0. A function f : E→ (−∞,∞] is said to be L-smooth
over a set D ⊆ int(dom(f )) if it is differentiable over D and satisfies

‖∇f (x)−∇f (y)‖∗ ≤ L‖x− y‖ for all x, y ∈ D.

The constant L is called the smoothness parameter.

I We consider here also non-Euclidean norms.

I The class of L-smooth functions is denoted by C 1,1
L (D).

I When D = E, the class is often denoted by C 1,1
L .

I The class of functions which are L-smooth for some L ≥ 0 is denoted by C 1,1.

I If a function is L1-smooth, then it is also L2-smooth for any L2 ≥ L1.

Examples:

I f (x) = 〈a, x〉+ b, a ∈ E, b ∈ R (0-smooth).

I f (x) = 1
2 xTAx + bTx + c , A ∈ Sn,b ∈ Rn and c ∈ R (‖A‖p,q-smooth if Rn

is endowed with the lp-norm).

I f (x) = 1
2d

2
C (f : E→ R) (1-smooth)
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The Descent Lemma
Lemma. Let f : E → (−∞,∞] be an L-smooth function (L ≥ 0) over a
given convex set D. Then for any x, y ∈ D,

f (y) ≤ f (x) + 〈∇f (x), y − x〉+
L

2
‖x− y‖2.

Proof.
I By the fundamental theorem of calculus:

f (y)− f (x) =
∫ 1

0
〈∇f (x + t(y − x)), y − x〉dt.

I f (y)− f (x) = 〈∇f (x), y − x〉+
∫ 1

0
〈∇f (x + t(y − x))−∇f (x), y − x〉dt.

I Thus,

|f (y)− f (x)− 〈∇f (x), y − x〉| =

∣∣∣∣∫ 1

0

〈∇f (x + t(y − x))−∇f (x), y − x〉dt
∣∣∣∣

(∗)

≤
∫ 1

0

‖∇f (x + t(y − x))−∇f (x)‖∗ · ‖y − x‖dt

≤
∫ 1

0

tL‖y − x‖2dt =
L

2
‖y − x‖2,
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Characterizations of L-smoothness

Theorem. Let f : E → R be a convex function, differentiable over E, and
let L > 0. Then the following claims are equivalent:

(i) f is L-smooth.

(ii) f (y) ≤ f (x) + 〈∇f (x), y − x〉+ L
2‖x− y‖2 for all x, y ∈ E.

(iii) f (y) ≥ f (x) + 〈∇f (x), y − x〉+ 1
2L‖∇f (x)−∇f (y)‖2

∗ for all x, y ∈ E.

(iv) 〈∇f (x)−∇f (y), x− y〉 ≥ 1
L‖∇f (x)−∇f (y)‖2

∗ for all x, y ∈ E.

(v) f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y)− L
2λ(1− λ)‖x− y‖2 for any

x, y ∈ E and λ ∈ [0, 1].
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L-Smoothness and Boundedness of the Hessian

Theorem. Let f : Rn → R be a twice continuously differentiable function
over Rn. Then for a given L ≥ 0, the following two claims are equivalent:

(i) f is L-smooth w.r.t. the lp norm (p ≥ 1).

(ii) ‖∇2f (x)‖p,q ≤ L for any x ∈ Rn, where q satisfies 1
p + 1

q = 1.

Corollary. Let f : Rn → R be a twice continuously differentiable convex
function over Rn. Then f is L-smooth w.r.t. the l2-norm iff λmax(∇2f (x)) ≤
L for any x ∈ Rn.

Examples

I f (x) =
√

1 + ‖x‖2
2 (f : Rn → R). 1-smooth w.r.t. to l2.

I f (x) = log (ex1 + ex2 + . . .+ exn) (f : Rn → R). 1-smooth w.r.t. l2 and
l∞-norms.
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The Proximal Gradient Method (PGM)
The Proximal Gradient Method aims to solve the composite model:

(P) min{F (x) ≡ f (x) + g(x) : x ∈ E}

(A) g : E→ (−∞,∞] is proper closed and convex.
(B) f : E→ (−∞,∞] is proper and closed; dom(g) ⊆ int(dom(f )) and f

Lf -smooth over int(dom(f )).
(C) The optimal set of problem (P) is nonempty and denoted by X ∗. The

optimal value of the problem is denoted by Fopt.

Three prototype examples:
I unconstrained smooth minimization (g ≡ 0)

min{f (x) : x ∈ E}

I convex constrained smooth minimization (g = δC ,C 6= ∅ closed convex)
min{f (x) : x ∈ C}

I l1 regularized problems (E = Rn, g(x) ≡ λ‖x‖1)

min{f (x) + λ‖x‖1 : x ∈ Rn}
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The Idea

Instead of minimizing directly

min
x∈E

f (x) + g(x)

Approximate f by a regularized linear approximation of f while keeping g fixed.

xk+1 = argmin
x

{
f (xk) +∇f (xk)T (x− xk) +

1

2tk
‖x− xk‖2 + g(x)

}

xk+1 = argmin
x

{
g(x) +

1

2tk

∥∥x− (xk − tk∇f (xk))
∥∥2
}

Proximal Gradient Method

xk+1 = proxtkg (xk − tk∇f (xk))
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Three Prototype Examples Contd.

I Gradient Method ( g = 0, unconstrained minimization)

xk+1 = xk − tk∇f (xk)

I Gradient Projection Method (g = δC , constrained convex minimization)

xk+1 = PC (xk − tk∇f (xk))

I Iterative Soft-Thresholding Algorithm (ISTA) (g = ‖ · ‖1):

xk+1 = Tλtk
(
xk − tk∇f (xk)

)
where Tα(u) = [|u| − αe]� sgn(u).
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The Proximal Gradient Method
I We will take the stepsizes as tk = 1

Lk
.

The Proximal Gradient Method

Initialization: pick x0 ∈ int(dom(f )).
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0.

(b) set xk+1 = prox 1
Lk

g

(
xk − 1

Lk
∇f (xk)

)
.

I The general update step can be written as xk+1 = T f ,g
Lk

(xk)

I T f ,g
L : int(dom(f ))→ E is the prox-grad operator defined by

T f ,g
L (x) ≡ prox 1

L g

(
x− 1

L
∇f (x)

)
.

I When the identities of f and g will be clear from the context, we will often
omit the superscripts f , g and write TL(·) instead of T f ,g

L (·).
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Sufficient Decrease Lemma

Lemma. Let F = f + g and TL ≡ T f ,g
L . Then for any x ∈ int(dom(f )) and

L ∈
(
Lf

2 ,∞
)

F (x)− F (TL(x)) ≥
L− Lf

2

L2

∥∥∥G f ,g
L (x)

∥∥∥2

, (4)

where G f ,g
L : int(dom(f )) → E is the operator defined by G f ,g

L (x) =
L(x− TL(x)).

Proof. We use the shorthand notation x+ = TL(x).
I By the descent lemma

f (x+) ≤ f (x) +
〈
∇f (x), x+ − x

〉
+

Lf
2
‖x− x+‖2. (5)

I By the second prox theorem, since x+ = prox 1
L g

(
x− 1

L∇f (x)
)
,〈

x− 1

L
∇f (x)− x+, x− x+

〉
≤ 1

L
g(x)− 1

L
g(x+).

I Thus, 〈∇f (x), x+ − x〉 ≤ −L ‖x+ − x‖2
+ g(x)− g(x+),

I which combined with (5) yields

f (x+) + g(x+) ≤ f (x) + g(x) +

(
−L +

Lf
2

)∥∥x+ − x
∥∥2
.
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The Gradient Mapping

I Definition. The gradient mapping is the operator G f ,g
L : int(dom(f ))→ E

defined by

G f ,g
L (x) ≡ L

(
x− T f ,g

L (x)
)

for any x ∈ int(dom(f )).

I When the identities of f and g will be clear from the context, we will use the
notation GL instead of G f ,g

L .

In the special case where L = Lf , the sufficient decrease lemma amounts to

Corollary. For any x ∈ int(dom(f )):

F (x)− F (TLf
(x)) ≥ 1

2Lf
‖GLf

(x)‖2
.
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Properties of the Gradient Mapping I
Recall: under properties (A),(B), the stationary points of the problem

(P) min{F (x) ≡ f (x) + g(x)}

are the points satisfying −∇f (x) ∈ ∂g(x). Necessary optimality condition when f
is nonconvex, and necessary and sufficient condition if f is convex.

Theorem Let f and g satisfy properties (A) and (B) and let L > 0. Then

(a) G f ,g0

L (x) = ∇f (x) for any x ∈ int(dom(f )), where g0(x) ≡ 0.

(b) For x∗ ∈ int(dom(f )), G f ,g
L (x∗) = 0 iff x∗ is a stationary point

Proof.
(a) G f ,g0

L (x) = L
(

x− prox 1
L g0

(
x− 1

L∇f (x)
))

= L
(
x−

(
x− 1

L∇f (x)
))

= ∇f (x).

(b) G f ,g
L (x∗) = 0 iff x∗ = prox 1

L g

(
x∗ − 1

L∇f (x∗)
)
. By the second prox theorem

x∗ − 1

L
∇f (x∗)− x∗ ∈ 1

L
∂g(x∗),

that is, iff −∇f (x∗) ∈ ∂g(x∗).
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The Gradient Mapping as an Optimality Measure

Corollary Let f and g satisfy properties (A) and (B) and let L > 0. Suppose

that in addition f is convex. Then for x∗ ∈ dom(g), G f ,g
L (x∗) = 0 if and

only if x∗ is an optimal solution of problem (P).

I ‖GL(x)‖ can be regarded as an “optimality measure” in the sense that it is
always nonnegative, and equal to zero if and only if x is a stationary point (or
optimal point if f is convex).
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Properties of the Gradient Mapping II

I monotonicity w.r.t. the parameter. for any x ∈ int(dom(f )) and
L1 ≥ L2 > 0,

‖GL1 (x)‖ ≥ ‖GL2 (x)‖,
‖GL1 (x)‖

L1
≤ ‖GL2 (x)‖

L2
.

I Lipschitz continuity. ‖GL(x)− GL(y)‖ ≤ (2L + Lf )‖x− y‖.
If in addition f is convex and Lf -smooth (over the entire space)

I 〈GLf
(x)− GLf

(y), x− y〉 ≥ 3
4Lf
‖GLf

(x)− GLf
(y)‖2

I ‖GLf
(x)− GLf

(y)‖ ≤ 4Lf

3 ‖x− y‖
I Monotonicity w.r.t. the prox-grad mapping: ‖GLf

(TLf
(x))‖ ≤ ‖GLf

(x)‖.
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Stepsize Strategies

I constant. Lk = L̄ ∈
(
Lf

2 ,∞
)

for all k .

I backtracking procedure B1. The procedure requires three
parameters (s, γ, η) where s > 0, γ ∈ (0, 1) and η > 1. First,
Lk is set to be equal to the initial guess s. Then, while

F (xk)− F (TLk
(xk)) <

γ

Lk
‖GLk

(xk)‖2,

we set Lk := ηLk . That is, Lk is chosen as Lk = sηik , where ik
is the smallest nonnegative integer for which the condition

F (xk)− F (Tsηik (xk)) ≥ γ

sηik
‖Gsηik (xk)‖2

is satisfied.

For the backtracking procedure it holds that Lk ≤ max
{
s, ηLf

2(1−γ)

}
.
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Sufficient Decrease For Proximal Gradient

Lemma. Let {xk}k≥0 be the sequence generated by PGM. with either a
constant stepsize defined by Lk = L̄ ∈

(
Lf

2 ,∞
)

or with a stepsize chosen by
the backtracking procedure B1. Then

F (xk)− F (xk+1) ≥ M‖Gd(xk)‖2,

where

M =


L̄− Lf

2

(L̄)2 constant stepsize,
γ

max
{
s,

ηLf
2(1−γ)

} backtracking,
d =

{
L̄, constant stepsize,
s, backtracking.

Proof. The result for the constant stepsize setting follows by plugging L = L̄ and
x = xk in the sufficient decrease lemma. For the backtracking procedure we have

F (xk )− F (xk+1) ≥
γ

Lk

‖GLk
(xk )‖2 ≥

γ

max
{
s,

ηLf
2(1−γ)

}‖GLk
(xk )‖2 ≥

γ

max
{
s,

ηLf
2(1−γ)

}‖Gs (xk )‖2
,
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Convergence of PGM - the Nonconvex Case

Theorem. Let {xk}k≥0 be the sequence generated by PGM with either a
constant stepsize defined by Lk = L̄ ∈

(
Lf

2 ,∞
)

or with a stepsize chosen by
the backtracking procedure B1. Then

(a) The sequence {F (xk)}k≥0 is nonincreasing. In addition,
F (xk+1) < F (xk) if and only if xk is not a stationary point of (P).

(b) Gd(xk)→ 0 as k →∞.

(c) minn=0,1,...,k ‖Gd(xn)‖ ≤
√

F (x0)−Fopt√
M(k+1)

.

(d) All limit points of the sequence {xk}k≥0 are stationary points of
problem (P).
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The Fundamental Prox-Grad Inequality
Theorem. For any x ∈ E and y ∈ int(dom(f )) satisfying

f (TL(y)) ≤ f (y) + 〈∇f (y),TL(y)− y〉+
L

2
‖TL(y)− y‖2, (6)

it holds that

F (x)− F (TL(y)) ≥ L

2
‖x− TL(y)‖2 − L

2
‖x− y‖2 + `f (x, y), (7)

where `f (x, y) = f (x)− f (y)− 〈∇f (y), x− y〉.

Proof.
I We use the notation y+ = TL(y).
I Since y+ = prox 1

L g

(
y − 1

L∇f (y)
)
, by the second prox theorem it follows that

1

L
g(x) ≥ 1

L
g(y+) +

〈
y − 1

L
∇f (y)− y+, x− y+

〉
.

I Therefore,

g(x) ≥ g(y+) + L〈y − y+, x− y+〉+ 〈∇f (y), y+ − x〉
= g(y+) + L〈y − y+, x− y+〉

+〈∇f (y), y+ − y〉+ 〈∇f (y), y − x〉 (8)
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Proof Contd.

I By (6), f (y+) ≤ f (y) + 〈∇f (y), y+ − y〉+ L
2‖y

+ − y‖2

I Hence, 〈∇f (y), y+ − y〉 ≥ f (y+)− f (y)− L
2‖y

+ − y‖2,

I which combined with (8) yields

F (x) ≥ F (y+) + L〈y − y+, x− y+〉 − L

2
‖y+ − y‖2 + `f (x, y).

I Using the identity 〈y− y+, x− y+〉 = 1
2‖x− y+‖2 + 1

2‖y− y+‖2 − 1
2‖y− x‖2,

we obtain that

F (x)− F (y+) ≥ L

2
‖x− y+‖2 − L

2
‖x− y‖2 + `f (x, y),
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Sufficient Decrease Lemma - 2nd Version

Corollary. For any x ∈ int(dom(f )) for which

f (TL(x)) ≤ f (x) + 〈∇f (x),TL(x)− x〉+
L

2
‖TL(x)− x‖2,

it holds that

F (x)− F (TL(x)) ≥ 1

2L
‖GL(x)‖2.
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Stepsize Strategies in the Convex Case
When f is also convex, we will define two possible stepsize strategies for which

f (xk+1) ≤ f (xk) + 〈∇f (xk), xk+1 − xk〉+
Lk
2
‖xk+1 − xk‖2.

I constant. Lk = Lf for all k .

I backtracking procedure B2. The procedure requires two parameters (s, η),
where s > 0 and η > 1. Define L−1 = s. At iteration k, Lk is set to be equal
to Lk−1. Then, while

f (TLk
(xk)) > f (xk) + 〈∇f (xk),TLk

(xk)− xk〉+
Lk
2
‖TLk

(xk)− xk‖2,

we set Lk := ηLk . That is, Lk is chosen as Lk = Lk−1η
ik , where ik is the

smallest nonnegative integer for which

f (TLk−1η
ik (xk)) ≤ f (xk) + 〈∇f (xk),TLk−1η

ik (xk)− xk〉+
Lk

2
‖TLk−1η

ik (xk)− xk‖2.
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Remarks

I βLf ≤ Lk ≤ αLf , where

α =

{
1, constant,

max
{
η, s

Lf

}
, backtracking,

β =

{
1, constant,
s
Lf
, backtracking.

I Monotonicity of PGM. Invoking the sufficient decrease lemma (2nd
version) with x = xk , we obtain that

F (xk)− F (xk+1) ≥ Lk
2
‖xk − xk+1‖2.

or

F (xk)− F (xk+1) ≥ 1

2Lk
‖GLk

(xk)‖2.
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O(1/k) Rate of Convergence of Proximal Gradient

Theorem. Suppose that f is convex. Let {xk}k≥0 be the sequence generated
by the proximal gradient method with either a constant stepsize rule or the
backtracking procedure B2. Then for any x∗ ∈ X ∗ and k ≥ 0,

F (xk)− Fopt ≤
αLf ‖x0 − x∗‖2

2k
,

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the

backtracking rule is employed.

Proof.

I Substituting L = Ln, x = x∗ and y = xn in the fundamental prox-grad ineq.,

2

Ln
(F (x∗)− F (xn+1)) ≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2 +

2

Ln
`f (x∗, xn)

≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2,
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Proof Contd.

I Summing over n = 0, 1, . . . , k − 1 and using the bound Ln ≤ αLf , we obtain

2

αLf

k−1∑
n=0

(F (x∗)− F (xn+1)) ≥ ‖x∗ − xk‖2 − ‖x∗ − x0‖2.

I
∑k−1

n=0 (F (xn+1)− Fopt) ≤ αLf

2 ‖x
∗ − x0‖2 − αLf

2 ‖x
∗ − xk‖2 ≤ αLf

2 ‖x
∗ − x0‖2.

I By the monotonicity of {F (xn)}n≥0,

k(F (xk)− Fopt) ≤
k−1∑
n=0

(F (xn+1)− Fopt) ≤
αLf

2
‖x∗ − x0‖2.

I Consequently, F (xk)− Fopt ≤ αLf ‖x∗−x0‖2

2k .
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Fejér Monotonicity

Theorem. Suppose that f is convex. Let {xk}k≥0 be the sequence generated
by the proximal gradient method with either a constant stepsize rule or the
backtracking procedure B2. Then for any x∗ ∈ X ∗ and k ≥ 0,

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.

Proof.

I Substituting L = Lk , x = x∗ and y = xk in the fundamental prox-grad
inequality (7),

2

Lk
(F (x∗)− F (xk+1)) ≥ ‖x∗ − xk+1‖2 − ‖x∗ − xk‖2 +

2

Lk
`f (x∗, xk)

≥ ‖x∗ − xk+1‖2 − ‖x∗ − xk‖2,

I The result follows by the inequality F (x∗)− F (xk+1) ≤ 0.
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Fejér Monotonicity - Definition and Main Result

I Definition. A sequence {xk}k≥0 ⊆ E is called Fejér monotone w.r.t. a set
S ⊆ E if ‖xk+1 − y‖ ≤ ‖xk − y‖ for all k ≥ 0 and y ∈ S .

Theorem (convergence of Fejér monotone sequences). Let {xk}k≥0 ⊆ E
be asequence, and let S be a set satisfying D ⊆ S , where D is the set
comprising all the limit points of {xk}k≥0. If {xk}k≥0 is Fejér monotone
w.r.t. S , then it converges to a point in D.

Consequence: convergence of the sequence generated by PGM.

Theorem. Suppose that f is convex. Let {xk}k≥0 be the sequence generated
by PGM with either a constant stepsize rule or the backtracking procedure
B2. Then the sequence {xk}k≥0 converges to an optimal solution of problem
(P).
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Iteration Complexity of Algorithms

I An ε-optimal solution of problem (P) is a vector x̄ ∈ dom(g) satisfying
F (x̄)− Fopt ≤ ε.

I In complexity analysis, the following question is asked: how many iterations
are required to obtain an ε-optimal solution? meaning how many iterations
are required to obtain the condition F (xk)− Fopt ≤ ε

I Recall: F (xk)− Fopt ≤ αLf ‖x0−x∗‖2

2k .

Theorem[O(1/ε) complexity of PGM]. For any k satisfying

k ≥
⌈
αLf R

2

2ε

⌉
it holds that F (xk) − Fopt ≤ ε, where R is an upper bound on ‖x∗ − x0‖

for some x∗ ∈ X ∗.
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O(1/k) Rate of Convergence of the Gradient Mapping
Norm in the Convex Case

Recall: minn=0,1,...,k ‖Gd(xn)‖ ≤
√

F (x0)−Fopt√
M(k+1)

.

We can do better if f is convex:

Theorem. Suppose that f is convex. Let {xk}k≥0 be the sequence generated
by PGM with either a constant stepsize by the backtracking procedure B2.
Then for any x∗ ∈ X ∗ and k ≥ 0,

min
n=0,1,...,k

‖GαLf
(xn)‖ ≤ 2α1.5Lf ‖x0 − x∗‖√

β(k + 1)
.

where α = β = 1 in the constant stepsize setting and α =

max
{
η, s

Lf

}
, β = s

Lf
if the backtracking rule is employed.

And even better if a constant stepsize is used: ‖GLf
(xk)‖ ≤ 2Lf ‖x0−x∗‖

k+1 .
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Linear Rate of Convergence of PGM – Strongly Convex
Case

Theorem. Suppose that f is σ-strongly convex (σ > 0). Let {xk}k≥0 be the
sequence generated by the proximal gradient method with either a constant
stepsize rule or backtracking procedure B2. Let

α =

{
1, constant stepsize,

max
{
η, s

Lf

}
, backtracking.

Then for any x∗ ∈ X and k ≥ 0,

(a) ‖xk+1 − x∗‖2 ≤
(

1− σ
αLf

)
‖xk − x∗‖2.

(b) ‖xk − x∗‖2 ≤
(

1− σ
αLf

)k
‖x0 − x∗‖2.

(c) F (xk+1)− Fopt ≤ αLf

2

(
1− σ

αLf

)k+1

‖x0 − x∗‖2.
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Complexity of PGM - the Strongly Convex Case

A direct result of the rate analysis:

Theorem. For any k ≥ 1 satisfying

k ≥ ακ log

(
1

ε

)
+ ακ log

(
αLf R

2

2

)
,

it holds that F (xk) − Fopt ≤ ε, where R is an upper bound on ‖x0 − x∗‖
and κ = Lf

σ .
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Non-Euclidean Spaces

I Until now we assumed that the underlying space is Euclidean, meaning that
‖ · ‖ =

√
〈·, ·〉.

I What is the effect of considering a different norm?

I What is the role of the dual space?

I We will concentrate the simplest example: the gradient method.
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The Dual Space
I A linear functional on a vector space E is a linear transformation from E to R.

I The dual space E∗ is the set of all linear functionals on E.

I Fact: For inner product spaces, for any linear functional f ∈ E∗, there exists
v ∈ E such that

f (x) = 〈v, x〉.

I We will make the association f (·) = 〈v, ·〉 ∈ E∗ ↔ v ∈ E.

I Convention: the elements in E∗ are the same as in E.

I The inner product in E∗ is the same as in E.

I Essentially, the only difference is the norm of the dual space:

‖y‖∗ ≡ max
x
{〈y, x〉 : ‖x‖ ≤ 1}, y ∈ E∗.

I Alternative representation:

‖y‖∗ = max
x
{〈y, x〉 : ‖x‖ = 1}, y ∈ E∗.

I Subgradients and gradients are always in the dual space.
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Gradient Method Revisited

I Consider the unconstrained problem

min{f (x) : x ∈ E},

where we assume that f is Lf -smooth w.r.t. the underlying norm:

‖∇f (x)−∇f (y)‖∗ ≤ Lf ‖x− y‖.

I The gradient method has the form

xk+1 = xk − tk∇f (xk).

I A“philosophical” flaw: xk ∈ E while ∇f (xk) ∈ E∗.
I Solution: consider the “primal counterpart” of ∇f (xk) ∈ E∗.
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The Primal Counterpart
I Definition. For any vector a ∈ E∗, the set of primal counterparts of a is

Λa = argmax
v∈E

{〈a, v〉 : ‖v‖ ≤ 1}.

Lemma [basic properties of primal counterparts] Let a ∈ E∗. Then

(a) If a 6= 0, then ‖a†‖ = 1 for any a† ∈ Λa.

(b) If a = 0, then Λa = B‖·‖[0, 1].

(c) 〈a, a†〉 = ‖a‖∗ for any a† ∈ Λa.

Examples: E = Rn, a 6= 0,

I ‖ · ‖ = ‖ · ‖2 Λa =
{

a
‖a‖2

}
.

I ‖ · ‖ = ‖ · ‖1, Λa =
{∑

i∈I (a) λi sgn(ai )ei :
∑

i∈I (a) λi = 1, λj ≥ 0, j ∈ I (a)
}
,

where I (a) = argmax
i=1,2,...,n

|ai |.

I ‖ · ‖ = ‖ · ‖∞. Λa = {z ∈ Rn : zi = sgn(ai ), i ∈ I 6=(a), |zj | ≤ 1, j ∈ I0(a)} ,
where
I 6=(a) = {i ∈ {1, 2, . . . , n} : ai 6= 0}, I0(a) = {i ∈ {1, 2, . . . , n} : ai = 0}.
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The Non-Euclidean Gradient Method
The Non-Euclidean Gradient Method

Initialization: pick x0 ∈ E arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick ∇f (xk)† ∈ Λ∇f (xk );

(b) set xk+1 = xk − ‖∇f (xk )‖∗
Lf

∇f (xk)†.

I Convergence analysis relies on the descent lemma:
f (y) ≤ f (x) + 〈∇f (x), y − x〉+ Lf

2 ‖x− y‖2.
I Sufficient Decrease: f (xk)− f (xk+1) ≥ 1

2Lf
‖∇f (xk)‖2

∗.
I Proof of sufficient decrease:

f (xk+1) ≤ f (xk) + 〈∇f (xk), xk+1 − xk〉+
Lf
2
‖xk+1 − xk‖2

= f (xk)− ‖∇f (xk)‖∗
Lf

〈∇f (xk),∇f (xk)†〉+
‖∇f (xk)‖2

∗
2L2

f

= f (xk)− 1

2Lf
‖∇f (xk)‖2

∗,
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Convergence in the Nonconvex Case
Theorem. Let {xk}k≥0 be the sequence generated by the non-Euclidean
gradient method. Then

(a) the sequence {f (xk)}k≥0 is nonincreasing. In addition,
f (xk+1) < f (xk) iff ∇f (xk) 6= 0;

(b) if the sequence {f (xk)}k≥0 is bounded below, then ∇f (xk)→ 0 as
k →∞;

(c) if the optimal value is finite and equal to fopt, then

minn=0,1,...,k ‖∇f (xn)‖∗ ≤
√

2Lf

√
f (x0)−fopt√
k+1

.

(d) all limit points of the sequence {xk}k≥0 are stationary points of f .

Proof. (a),(b) and (d) follow immediately from the sufficient decrease property.
(c) follows by summing the sufficient decrease property

f (x0)− fopt ≥ f (x0)− f (xk+1) =
k∑

n=0

(f (xn)− f (xn+1))

≥ 1

2Lf

k∑
n=0

‖∇f (xn)‖2
∗ ≥

k + 1

2Lf
min
n
‖∇f (xn)‖2

∗
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Convergence in the Convex Case

Assumptions:

I f : E→ R is Lf -smooth and convex.

I The optimal set is nonempty and denoted by X ∗. The optimal value is
denoted by fopt.

I There exists R > 0 s.t. maxx,x∗{‖x∗ − x‖ : f (x) ≤ f (x0), x∗ ∈ X ∗} ≤ R.

Lemma. f (xk)− f (xk+1) ≥ 1
2Lf R2 (f (xk)− fopt)

2

Proof.
I By the gradient inequality,

f (xk)−fopt = f (xk)−f (x∗) ≤ 〈∇f (xk), xk−x∗〉 ≤ ‖∇f (xk)‖∗‖xk−x∗‖ ≤ R‖∇f (xk)‖∗.

I Combining the above with sufficient decrease property,
f (xk)− f (xk+1) ≥ 1

2Lf
‖∇f (xk)‖2

∗, the result follows.
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O(1/k) rate of convergence of the non-Euclidean gradient
method

For any k ≥ 1,

f (xk)− fopt ≤
2Lf R

2

k

Proof.

I Define ak = f (xk)− fopt
I Then by previous lemma,

ak − ak+1 ≥
1

C
a2
k ,

where C = 2Lf R
2.

I We can thus deduce (why?) that ak ≤ C
k .
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Non-Euclidean Gradient under the l1-Norm

I Rn endowed with the l1-norm.

I f be an Lf -smooth function w.r.t. the l1-norm.

Non-Euclidean Gradient under the l1-Norm

I Initialization: pick x0 ∈ Rn.

I General step: for any k = 0, 1, 2, . . . execute the following steps:

I set ik ∈ argmax
i

∣∣∣∣∂f (xk)

∂xi

∣∣∣∣;
I xk+1 = xk − ‖∇f (xk )‖∞

Lf
sgn

(
∂f (xk )
∂xik

)
eik .

Coordinate descent-type method
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Example

Consider the problem

min
x∈Rn

{
1

2
xTAx + bTx

}
,

I A ∈ Sn++ and b ∈ Rn.

I The underlying space is E = Rn endowed with the lp-norm (p ∈ [1,∞]).

I f is L
(p)
f -smooth with

L
(p)
f = ‖A‖p,q = max

x
{‖Ax‖q : ‖x‖p ≤ 1}

with q ∈ [1,∞] satisfying 1
p + 1

q = 1.

Two settings:

I p = 2. In this case, since A is positive definite, L
(2)
f = ‖A‖2,2 = λmax(A).

I p = 1. Here L
(1)
f = ‖A‖1,∞ = maxi,j |Ai,j |.
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Two Algorithms
Euclidean (p = 2):

Algorithm G2

I Initialization: pick x0 ∈ Rn.

I General step (k ≥ 0): xk+1 = xk − 1

L
(2)
f

(Axk + b).

Non-Euclidean (p = 1)

Algorithm G1

I Initialization: pick x0 ∈ Rn.

I General step (k ≥ 0):
I pick ik ∈ argmax

i=1,2,...,n
|Aix

k + bi |, where Ai denotes ith row of A.

I update xk+1
j =

{
xk
j , j 6= ik ,

xk
ik
− 1

L
(1)
f

(Aik xk + bik ), j = ik .

• Algorithm G2 requires O(n2) operations per iteration, while algorithm G1
requires only O(n).
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Example Contd.

I Set A = J + 2I, where J is the matrix of all-ones.

I A is positive definite and λmax(A) = 2 + n, maxi,j |Ai,j | = 3.

I Therefore, as ρf ≡
L

(2)
f

L
(1)
f

= n+2
3 gets larger, the Euclidean gradient method

(Algorithm G2) should become more inferior to the non-Euclidean version
(Algorithm G1).

Numerical Example:

I b = 10e1, x0 = en.

I n = 10/100(ρf = 4/34)

I We count both iterations and “meta iterations” of G1.
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Fast Proximal Gradient
I A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm

for linear inverse problems, SIAM J. Imaging Sci. (2009).

I A. Beck and M. Teboulle, Gradient-based algorithms with applications to
signal-recovery problems, In Convex optimization in signal processing and
communications (2010)

I Y. Nesterov, Gradient methods for minimizing composite functions, Math.
Program. (2013)
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FISTA (Fast Proximal Gradient Method)
• The model:

(P) min
x∈E

f (x) + g(x)

• Underlying Assumptions:

(A) g : E→ (−∞,∞] is proper closed and convex.

(B) f : E→ R is Lf -smooth and convex.

(C) The optimal set of (P) is nonempty and denoted by X ∗. The optimal value
of the problem is denoted by Fopt.

• The Idea: instead of making a step of the form

xk+1 = prox 1
Lk

g

(
xk − 1

Lk
∇f (xk)

)
we will consider a step of the form

xk+1 = prox 1
Lk

g

(
yk − 1

Lk
∇f (yk)

)
where yk is a special linear combination of xk , xk−1
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FISTA

FISTA
Input: (f , g , x0), where f and g satisfy properties (A) and (B) and x0 ∈ E.
Initialization: set y0 = x0 and t0 = 1.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0.

(b) set xk+1 = prox 1
Lk

g

(
yk − 1

Lk
∇f (yk)

)
.

(c) set tk+1 =
1+
√

1+4t2
k

2 .

(d) compute yk+1 = xk+1 +
(

tk−1
tk+1

)
(xk+1 − xk).

I The dominant computational steps of the proximal gradient and FISTA
methods are the same: one proximal computation and one gradient
evaluation.
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Stepsize Rules
I constant. Lk = Lf for all k .

I backtracking procedure B3. The procedure requires two parameters
(s, η), where s > 0 and η > 1. Define L−1 = s. At iteration k, Lk is
set to be equal to Lk−1. Then, while

f (TLk
(yk)) > f (yk) + 〈∇f (yk),TLk

(yk)− yk〉+
Lk
2
‖TLk

(yk)− yk‖2,

we set Lk := ηLk . In other words, the stepsize is chosen as
Lk = Lk−1η

ik , where ik is the smallest nonnegative integer for which

f (TLk−1η
ik (yk)) ≤ f (yk) + 〈∇f (yk),TLk−1η

ik (yk)− yk〉+

Lk
2
‖TLk−1η

ik (yk)− yk‖2.

In both stepsize rules,

f (TLk
(yk)) ≤ f (yk) + 〈∇f (yk),TLk

(yk)− yk〉+
Lk
2
‖TLk

(yk)− yk‖2.
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Remarks

I βLf ≤ Lk ≤ αLf , where

α =

{
1, constant,

max
{
η, s

Lf

}
, backtracking,

β =

{
1, constant,
s
Lf
, backtracking.

I Easy to show by induction that tk ≥ k+2
2 for all k ≥ 0.
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O(1/k2) rate of convergence of FISTA

Theorem. Let {xk}k≥0 be the sequence generated by FISTA with either
a constant stepsize rule or the backtracking procedure B3. Then for any
x∗ ∈ X ∗ and k ≥ 1,

F (xk)− Fopt ≤
2αLf ‖x0 − x∗‖2

(k + 1)2
,

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the

backtracking rule is employed.

Proof heavily based on the fundamental proximal gradient inequality.
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Alternative Choice for tk

I For the proof of the O(1/k2) rate, it is enough to require that {tk}k≥0 will
satisfy

(a) tk ≥ k+2
2

;
(b) t2

k+1 − tk+1 ≤ t2
k .

I The choice tk = k+2
2 also satisfies these two properties. (a) is obvious. (b)

holds since

t2
k+1 − tk+1 = tk+1(tk+1 − 1) =

k + 3

2
· k + 1

2
=

k2 + 4k + 3

4

≤ k2 + 4k + 4

4
=

(k + 2)2

4
= t2

k .
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ISTA/FISTA

Consider the model
min
x∈Rn

f (x) + λ‖x‖1,

I λ > 0

I f : Rn → R convex and Lf -smooth.

Iterative Shrinkage/Thresholding Algorithm (ISTA):

xk+1 = Tλ/Lf

(
xk − 1

Lf
∇f (xk)

)
.

Fast Iterative Shrinkage/Thresholding Algorithm (ISTA):

(a) xk+1 = T λ
Lf

(
yk − 1

Lf
∇f (yk)

)
.

(b) tk+1 =
1+
√

1+4t2
k

2 .

(c) yk+1 = xk+1 +
(

tk−1
tk+1

)
(xk+1 − xk).
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l1-Regularized Least Squares
Consider the problem

min
x∈Rn

1

2
‖Ax− b‖2

2 + λ‖x‖1,

I A ∈ Rm×n,b ∈ Rm and λ > 0.

I Fits (P) with f (x) = 1
2‖Ax− b‖2

2 and g(x) = λ‖x‖1.

I f is Lf -smooth with Lf = ‖ATA‖2,2 = λmax(ATA).

ISTA: xk+1 = T λ
Lk

(
xk − 1

Lk
AT (Axk − b)

)
.

FISTA:

(a) xk+1 = T λ
Lk

(
yk − 1

Lk
AT (Ayk − b)

)
.

(b) tk+1 =
1+
√

1+4t2
k

2 .

(c) yk+1 = xk+1 +
(

tk−1
tk+1

)
(xk+1 − xk).
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Numerical Example I

I test on regularized l1-regularized least squares.

I λ = 1.

I A ∈ R100×110. The components of A were independently generated using a
standard normal distribution.

I the “true” vector is xtrue = e3 − e7.

I b = Axtrue.

I ran 200 iterations of ISTA and FISTA with x0 = e.

Amir Beck Proximal-Based Methods 114 / 181



Function Values

0 50 100 150 200
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

F
(x

k )−
F

 o
pt

 

 
ISTA
FISTA

Amir Beck Proximal-Based Methods 115 / 181



Solutions
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Example 2: Wavelet-Based Image Deblurring

min
x

1

2
‖Ax− b‖2 + λ‖x‖1

I image of size 512x512

I matrix A is dense (Gaussian blurring times inverse of two-stage Haar wavelet
transform).

I all problems solved with fixed λ and Gaussian noise.
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Deblurring of the Cameraman

original blurred and noisy
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1000 Iterations of ISTA versus 200 of FISTA

ISTA: 1000 Iterations FISTA: 200 Iterations
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Original Versus Deblurring via FISTA

Original FISTA:1000 Iterations
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Weighted FISTA
I E = Rn

I The underlying assumption is that E is Euclidean.
I Assume that the endowed inner product is the Q-inner product:

〈x, y〉 = xTQy,

where Q ∈ Sn++.
I ∇f (x) = Q−1Df (x), where

Df (x) =


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

 .

I LQ
f (Lipschitz constant of f w.r.t. the Q-norm):

‖Q−1Df (x)−Q−1Df (y)‖Q ≤ LQ
f ‖x− y‖Q for any x, y ∈ Rn.
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Weighted FISTA

The general update rule for FISTA in this case will have the form

(a) xk+1 = prox 1

LQ
f

g

(
yk − 1

Lf
Q−1Df (yk)

)
.

(b) tk+1 =
1+
√

1+4t2
k

2 .

(c) yk+1 = xk+1 +
(

tk−1
tk+1

)
(xk+1 − xk).

The prox operator in step (a) is computed in terms of the Q-norm:

proxh(x) = argmin
u∈Rn

{
h(u) +

1

2
‖u− x‖2

Q

}
.

The convergence result will also be written in term of the Q-norm

F (xk)− Fopt ≤
2αLQ

f ‖x0 − x∗‖2
Q

(k + 1)2
.
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Restarting FISTA in the Strongly Convex Case

I Assume that f is σ-strongly convex for some σ > 0.

I The proximal gradient method attains an ε-optimal solution after an order of
O(κ log( 1

ε )) iterations (κ = Lf

σ ).

I A natural question is how the complexity result improves when using FISTA.

I Done by incorporating a restarting mechanism to FISTA – improves
complexity result to O(

√
κ log( 1

ε ))

Restarted FISTA
Initialization: pick z−1 ∈ E and a positive integer N. Set z0 = TLf

(z−1).
General step (k ≥ 0)

I run N iterations of FISTA with constant stepsize (Lk ≡ Lf ) and input
(f , g , zk) and obtain a sequence {xn}Nn=0;

I set zk+1 = xN .

Amir Beck Proximal-Based Methods 124 / 181



Restarted FISTA

Theorem [O(
√
κ log( 1

ε )) complexity of restarted FISTA] Suppose that that
f is σ-strongly convex (σ > 0). Let {zk}k≥0 be the sequence generated by
the restarted FISTA method employed with N = d

√
8κ − 1e. Let R be an

upper bound on ‖z−1 − x∗‖. Then

(a) F (zk)− Fopt ≤ Lf R
2

2

(
1
2

)k
;

(b) after k iterations of FISTA with k satisfying

k ≥
√

8κ

(
log( 1

ε )

log(2)
+

log(Lf R
2)

log(2)

)
,

an ε-optimal solution is obtained at the end of last completed cycle:

F (zb
k
N c)− Fopt ≤ ε.
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Smoothing
I A. Beck and M. Teboulle, Smoothing and first order methods: a unified

framework. SIAM J. Optim. (2012)

I Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program.
(2005)
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Smoothing

I It is known that in general smooth convex optimization problems can be
solved with complexity O(1/ε2)

I FISTA requires O(1/
√
ε) to obtain an ε-optimal solution of the composite

model f + g .

I We will show how FISTA can be used to devise a method for more general
nonsmooth convex problems in an improved complexity of O(1/ε).

The model under consideration is

(P) min{f (x) + h(x) + g(x) : x ∈ E}.

I f Lf -smooth and convex;

I g proper closed and convex and “proximable”;

I h real-valued and convex (but not “proximable”)
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The Idea

(P) min{f (x) + h(x) + g(x) : x ∈ E}.

I Solving (P) with FISTA with smooth/nosmooth parts (f , g + h) is not
practical.

I The idea will be to find a smooth approximation of h, say h̃ and solve the
problem via FISTA with smooth and nonsmooth parts taken as (f + h̃, g).

I This simple idea will be the basis for the improved O(1/ε) complexity.

I Need to study in more details the notions of smooth approximations and
smoothability.
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Smooth Approximations and Smoothability

I Definition. A convex function h : E→ R is called (α, β)-smoothable
(α, β > 0) if for any µ > 0 there exists a convex differentiable function
hµ : E→ R such that

(a) hµ(x) ≤ h(x) ≤ hµ(x) + βµ for all x ∈ E.
(b) hµ is α

µ
-smooth.

I The function hµ is called a 1
µ -smooth approximation of h with parameters

(α, β).

Examples:

I h(x) = ‖x‖2(E = Rn). For any µ > 0, hµ(x) ≡
√
‖x‖2

2 + µ2 − µ is a
1
µ -smooth approximation of h with parameters (1, 1) ⇒ h is

(1,1)-smoothable.

I h(x) = max{x1, x2, . . . , xn}(E = Rn). For any µ > 0,
hµ(x) = µ log

(∑n
i=1 e

xi/µ
)
− µ log n is a smooth approximation of h with

parameters (1, log n) ⇒ h is (1, log n)-smoothable.
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Calculus of Smooth Approximations

Theorem.

(a) Let h1, h2 : E→ R be convex functions and let γ1, γ2 be nonnegative
numbers. Suppose that for a given µ > 0, hiµ is a 1

µ -smooth

approximation of hi with parameters (αi , βi ) for i = 1, 2, then
γ1h

1
µ + γ2h

2
µ is a 1

µ -smooth approximation of γ1h
1 + γ2h

2 with

parameters (γ1α1 + γ2α2, γ1β1 + γ2β2).

(b) Let A : E→ V be a linear transformation between the Euclidean
spaces E and V. Let h : V→ R be a convex function and define

q(x) ≡ h(A(x) + b),

where b ∈ V. Suppose that for a given µ > 0, hµ is a 1
µ -smooth

approximation of h with parameters (α, β). Then the function
qµ(x) ≡ hµ(A(x) + b) is a 1

µ -smooth approximation of q with

parameters (α‖A‖2, β).

Proof: very easy...
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Operations Preserving Smoothability

Corollary.

(a) Let h1, h2 : E→ R be convex functions which are (α1, β1)- and
(α2, β2)-smoothable respectively, and let γ1, γ2 be nonnegative
numbers. Then γ1h

1 + γ2h
2 is a

(γ1α1 + γ2α2, γ1β1 + γ2β2)-smoothable function.

(b) Let A : E→ V be a linear transformation between the Euclidean
spaces E and V. Let h : V→ R be a convex (α, β)-smoothable
function and define

q(x) ≡ g(A(x) + b),

where b ∈ V. Then q is an (α‖A‖2, β)-smoothable function.
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Smooth Approximation of Piecewise Affine Functions

I Let q(x) = max
i=1,...,m

{aT
i x + bi}, where ai ∈ Rn and bi ∈ R for any

i = 1, 2, . . . ,m.

I q(x) = g(Ax + b), where g(y) = max{y1, y2, . . . , ym}, A is the matrix whose
rows are aT

1 , a
T
2 , . . . , a

T
m and b = (b1, b2, . . . , bm)T .

I Let µ > 0. gµ(y) = µ log
(∑m

i=1 e
yi/µ
)
− µ logm is a 1

µ -smooth

approximation of g with parameters (1, logm).

I Therefore,

qµ(x) ≡ gµ(Ax + b) = µ log
(∑m

i=1 e
(aT

i x+bi )/µ
)
− µ logm

is a 1
µ -smooth approximation of q with parameters (‖A‖2

2,2, logm).
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The Moreau Envelope

Definition. Given a proper closed convex function f : E → (−∞,∞], and
µ > 0, the Moreau envelope of f is the function

Mµ
f (x) = min

u∈E

{
f (u) +

1

2µ
‖x− u‖2

}
.

I The parameter µ is called the smoothing parameter.

I By the first prox theorem the minimization problem defining the Moreau
envelope has a unique solution, given by proxµf (x). Therefore,

Mµ
f (x) = f (proxµf (x)) +

1

2µ
‖x− proxµf (x)‖2.
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Examples
I Indicators. Suppose that f = δC , where C ⊆ E is a nonempty closed and

convex set. Then proxf = PC and

Mµ
f (x) = δC (PC (x)) +

1

2µ
‖x− PC (x))‖2.

Therefore,

Mµ
δC

=
1

2µ
d2
C .

I Euclidean Norms f (x) = ‖x‖. Then for any µ > 0 and x ∈ E,

proxµf (x) =

(
1− µ

max{‖x‖, µ}

)
x.

Therefore,

Mµ
f (x) = ‖proxµf (x)‖+

1

2µ
‖x− proxµf (x)‖2 =

{ 1
2µ‖x‖

2, ‖x‖ ≤ µ,
‖x‖ − µ

2 , ‖x‖ > µ,︸ ︷︷ ︸
Hµ(x)

Hµ - Huber function
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Huber Function
Hµ gets smoother as µ increases.
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Smoothability of the Moreau Envelope
Theorem. Let f : E → (−∞,∞] be a proper closed and convex function.
Let µ > 0. Then Mµ

f is 1
µ -smooth over E and

∇Mµ
f (x) =

1

µ

(
x− proxµf (x)

)
.

Examples:
I (smoothability of the squared distance) Let C ⊆ E be a nonempty closed

and convex set. Recall that 1
2d

2
C = M1

δC
. Then 1

2d
2
C is 1-smooth and

∇
(
1/2d2

C

)
(x) = x− proxδC (x) = x− PC (x).

I (smoothability of Huber) Hµ = Mµ
f , where f (x) = ‖x‖. Then Hµ is

1
µ -smooth and

∇Hµ(x) =
1

µ

(
x− proxµf (x)

)
=

1

µ

(
x−

(
1− µ

max{‖x‖, µ}

)
x

)
=

{
1
µx, ‖x‖ ≤ µ,

x
‖x‖ , ‖x‖ > µ,
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Smoothability of Lipschitz Convex Functions
Theorem. Let h : E→ R be a convex function satisfying

|h(x)− h(y)| ≤ `h‖x− y‖ for all x, y ∈ E.

Then µ > 0 Mµ
h is a 1

µ -smooth approximation of h with parameters (1,
`2
h

2 ).

Corollary. Let h : E → R be convex and Lipschitz with constant `h. Then

h is (1,
`2
h

2 )-smoothable.

Examples:
I (smooth approximation of the l2-norm) Let h(x) = ‖x‖2 (over Rn). Then

h is convex and Lipschitz with constant `h = 1. Therefore,

Mµ
h (x) = Hµ(x) =

{ 1
2µ‖x‖

2
2, ‖x‖2 ≤ µ,

‖x‖2 − µ
2 , ‖x‖2 > µ.

is a 1
µ -smooth approximation of h with parameters (1, 1

2 ).
I (smooth approximation of the l1-norm) Let h(x) = ‖x‖1 Then h is convex

and Lipschitz with constant `h =
√
n. Hence, Mµ

h (x) =
∑n

i=1 Hµ(xi ) is a
1
µ -smooth approximation of h with parameters (1, n2 ).
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Smooth Approximations of the Absolute Value Function
Three possible smooth approximations of h(x) = |x |

I h1
µ(x) =

√
x2 + µ2 − µ, (α, β) = (1, 1).

I h2
µ(x) = µ log(ex/µ + e−x/µ)− µ log 2, (α, β) = (1, log 2).

I h3
µ(x) = Hµ(x), (α, β) = (1, 1

2 ).
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Back to Algorithms - Model and Assumptions

Main model:
(P) min

x∈E
{H(x) ≡ f (x) + h(x) + g(x)}

.

(A) f : E→ R is Lf -smooth (Lf > 0).

(B) h : E→ R is (α, β)-smoothable (α, β > 0). For any µ > 0, hµ denotes a
1
µ -smooth approximation of h with parameters (α, β).

(C) g : E→ (−∞,∞] is proper closed and convex.

(D) H has bounded level sets. Specifically, for any δ > 0, there exists Rδ > 0
such that

‖x‖ ≤ Rδ for any x satisfying H(x) ≤ δ.

(E) The optimal set of (P) is nonempty and denoted by X ∗. The optimal value
of the problem is denoted by Hopt.
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The S-FISTA Method
I The idea is to consider the following smoothed version of (P):

(Pµ) min
x∈E
{Hµ(x) ≡ f (x) + hµ(x)︸ ︷︷ ︸

Fµ(x)

+g(x)},

for some µ > 0, and solve it using FISTA with constant stepsize.
I A Lipschitz constant of ∇Fµ is Lf + α

µ ; the stepsize is taken as 1
Lf +α

µ
.

S-FISTA
Input: x0 ∈ dom(g), µ > 0.
Initialization: set y0 = x0, t0 = 1; construct hµ – a 1

µ -smooth approxima-

tion of h with parameters (α, β); set Fµ = f + hµ, L̃ = Lf + α
µ .

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) xk+1 = prox 1
L̃
g

(
yk − 1

L̃
∇Fµ(yk)

)
;

(b) tk+1 =
1+
√

1+4t2
k

2 ;

(c) yk+1 = xk+1 +
(

tk−1
tk+1

)
(xk+1 − xk).
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O(1/ε) complexity of S-FISTA

Theorem. Let ε ∈ (0, ε̄) for some fixed ε̄. Let {xk}k≥0 be the sequence
generated by S-FISTA with smoothing parameter

µ =

√
α

β

ε√
αβ +

√
αβ + Lf ε

.

Then for any k satisfying

k ≥ 2
√

2αβΓ
1

ε
+
√

2Lf Γ
1√
ε
,

where Γ = (RH(x0)+ ε̄
2

+ ‖x0‖)2, it holds that H(xk)− Hopt ≤ ε.
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Minimization of “Proximable” Functions
Consider the problem

(P1) min
x∈E
{h(x) : x ∈ C},

I C is a nonempty closed and convex set.

I h : E→ R is convex function Lipschitz with constant `h.

I Fits model (P) with f = 0 and g = δC .

I hµ = Mµ
h is a 1

µ -smooth approximation of h with parameters (α, β) = (1,
`2
h

2 ).

I ∇Mµ
h (x) = 1

µ (x− proxµh(x)).

I After employing O(1/ε) iterations of the the S-FISTA method with

µ =

√
α

β

ε√
αβ +

√
αβ + Lf ε

=

√
α

β

ε√
αβ +

√
αβ

=
ε

2β
=

ε

`2
h

,

an ε-optimal solution will be achieved.

I The stepsize is 1
L̃

, where L̃ = α
µ = 1

µ .
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S-FISTA for Solving (P1)

I The general step of the S-FISTA method is

xk+1 = prox 1
L̃
g

(
yk − 1

L̃
∇Fµ(yk)

)
= PC

(
yk − 1

L̃µ
(yk − proxµh(yk))

)
= PC (proxµh(yk)).

S-FISTA for solving (P1)

Initialization: set y0 = x0 ∈ C , t0 = 1; set µ = ε
`2
h

and L̃ =
`2
h

ε .

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) xk+1 = PC (proxµh(yk));

(b) tk+1 =
1+
√

1+4t2
k

2 ;

(c) yk+1 = xk+1 +
(

tk−1
tk+1

)
(xk+1 − xk).

Amir Beck Proximal-Based Methods 143 / 181



Block Proximal Gradient Methods

I A. Beck and L. Tetruashvili. On the convergence of block coordinate descent
type methods, SIAM J. Optim. (2013)

I M. Hong, X. Wang, M. Razaviyayn, and Z. Q Luo, Iteration complexity
analysis of block coordinate descent methods, Arxiv.

I Q. Lin, Z. Lu, and L. Xiao, An accelerated randomized proximal coordinate
gradient method and its application to regularized empirical risk
minimization, SIAM J. Optim., (2015)

I R. Shefi and M. Teboulle, On the rate of convergence of the proximal
alternating linearized minimization algorithm for convex problems, EURO J.
Comput. Optim. (2016)
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Block Proximal Gradient Methods
The Model

(P) min
x1∈E1,x2∈E2,...,xp∈Ep

F (x1, x2, . . . , xp) = f (x1, x2, . . . , xp) +

p∑
j=1

gj(xj)

 ,

Setting and Notation
I E1,E2, . . . ,Ep are Euclidean spaces.
I E = E1 × E2 × · · · × Ep. We use the notation that a vector x ∈ E can be

written as x = (x1, x2, . . . , xp).
I The product space is also Euclidean with endowed norm

‖(u1,u2, . . . ,up)‖E =
√∑p

i=1 ‖ui‖2
Ei
.

I g : E→ (−∞,∞] is defined by g(x1, x2, . . . , xp) ≡
∑p

i=1 gi (xi ). (P) can thus
be simply written as minx∈E f (x) + g(x)

I The gradient w.r.t. the ith block (i ∈ {1, 2, . . . , p}) is denoted by ∇i f
∇f (x) = (∇1f (x),∇2f (x), . . . ,∇pf (x)).

I For any i ∈ {1, 2, . . . , p} we define Ui : Ei → E to be the linear
transformation given by Ui (d) = (0, . . . , 0, d︸︷︷︸

ith block

, 0, . . . , 0), d ∈ Ei .
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Underlying Assumption

(A) gi : Ei → (−∞,∞] is proper closed and convex for any i ∈ {1, 2, . . . , p}.
(B) f : E→ R is Lf -smooth and convex.

(C) There exist L1, L2, . . . , Lp > 0 such that for any i ∈ {1, 2, . . . , p} it holds that

‖∇i f (x)−∇i f (x + Ui (d))‖ ≤ Li‖d‖

for all x ∈ E and d ∈ Ei .

(D) The optimal set of problem (P) is nonempty and denoted by X ∗. The
optimal value is denoted by Fopt.
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The Block Proximal Gradient Method

The Block Proximal Gradient Method

Initialization. pick x0 = (x0
1, x

0
2, . . . , x

0
p) ∈ int(dom(f )).

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick ik ∈ {1, 2, . . . , p};

(b) xk+1
j =

{
prox 1

Lik
gik

(
xik − 1

Lik
∇ik f (xk)

)
, j = ik ,

xkj , j 6= ik .

Index selection strategies:

I cyclic. ik = (k mod p) + 1.
Cyclic Block Proximal Gradient (CBPG)

I randomized. ik is randomly picked from {1, 2, . . . , p} by a uniform
distribution.
Randomized Block Proximal Gradient (RBPG)
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O(1/k) Rate of CBPG

Theorem. Suppose that Assumptions (A-D) hold as well as

(E) For any α > 0, there exists Rα > 0 such that

max
x,x∗∈E

{‖x− x∗‖ : F (x) ≤ α, x∗ ∈ X ∗} ≤ Rα.

Let {xk}k≥0 be the sequence generated by the CBPG method. For any
k ≥ 2:

F (xpk)− Fopt ≤ max

{(
1

2

)(k−1)/2

(F (x0)− Fopt),
8p(Lf + Lmax)2R2

Lmin(k − 1)

}
,

where Lmin = mini=1,2,...,p Li , Lmax = maxi=1,2,...,p Li and R = RF (x0).
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O(1/k) Rate of RBPG

Theorem. Suppose that Assumption (A)-(D) hold. Let {xk}k≥0 be the
sequence generated by the RBPG method. Let x∗ ∈ X ∗. Then for any
k ≥ 0,

Eξk (F (xk+1))− Fopt ≤
p

p + k + 1

(
1

2
‖x0 − x∗‖2

L + F (x0)− Fopt

)
.

Here

‖v‖2
L ≡

√√√√ p∑
i=1

Li‖vi‖2
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Dual-Based Proximal Gradient
Methods

I A. Beck and M. Teboulle, A fast dual proximal gradient algorithm for convex
minimization and applications, Oper. Res. Lett. (2014)

I A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained
total variation image denoising and deblurring problems, IEEE Trans. Image
Process. (2009)

I A. Beck, L. Tetruashvili, Y. Vaisbourd, and A. Shemtov, Rate of convergence
analysis of dual-based variables decomposition methods for strongly convex
problems, (2016)

I A. Chambolle, An algorithm for total variation minimization and applications,
J. Math. Imaging Vision (2004)

I P. Tseng, Applications of a splitting algorithm to decomposition in convex
programming and variational inequalities. SIAM J. Control Optim., (1991)
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The Main Model

Main Model:
(P) fopt = min

x∈E
{f (x) + g(A(x))} ,

Underlying Assumptions:

(A) f : E→ (−∞,+∞] is proper closed and σ-strongly convex (σ > 0).

(B) g : V→ (−∞,+∞] is proper closed and convex.

(C) A : E→ V is a linear transformation.

(D) there exists x̂ ∈ ri(dom(f )) and ẑ ∈ ri(dom(g)) such that A(x̂) = ẑ.

Existence and uniqueness of optimal solution: under the above assump-
tions, the objective function is proper closed and strongly convex, and hence
there exists a unique optimal solution, which will be denoted by x∗.
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Example 1: Orthogonal Projection onto a Polyhedral set

I Let
S = {x ∈ Rn : Ax ≤ b},

where A ∈ Rp×n, b ∈ Rp. Assume that S 6= ∅.
I Let d ∈ Rn. The orthogonal projection of d onto S is the unique optimal

solution of

min
x∈Rn

{
1

2
‖x− d‖2 : Ax ≤ b

}
.

I Fits model (P) with E = Rn,V = Rp, f (x) = 1
2‖x− d‖2,

g(z) = δBox[−∞e,b](z) =

{
0, z ≤ b,
∞, else.

and A(x) ≡ Ax.

I σ = 1
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Example 2: One-Dimensional Total Variation Denoising
I Denoising problem:

min
x∈E

1

2
‖x− d‖2 + R(A(x)).

I d ∈ E - noisy and known signal
I A : E→ V - linear transformation.
I R : V→ R+ - regularizing function measuring the magnitude of its argument.

I One-dimensional total variation denoising problem,
E = Rn,V = Rn−1,A(x) = Dx,R(z) = λ‖z‖1(λ > 0), D defined by
Dx = (x1 − x2, x2 − x3, . . . , xn−1 − xn)T

(P1) min
x∈Rn

{
1

2
‖x− d‖2

2 + λ‖Dx‖1

}
.

I More explicitly: minx∈E

{
1
2‖x− d‖2

2 + λ
∑n−1

i=1 |xi − xi+1|
}
.

I The function x 7→ ‖Dx‖1 is a one-dimensional total variation function.

I Fits model (P) with
E = Rn,V = Rn−1, f (x) = 1

2‖x− d‖2(σ = 1), g(y) = λ‖y‖1, A(x) ≡ Dx
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The Dual Problem
I (P) is the same as minx,z{f (x) + g(z) : A(x)− z = 0}
I Lagrangian:

L(x, z; y) = f (x) + g(z)− 〈y,A(x)− z〉 = f (x) + g(z)− 〈AT (y), x〉+ 〈y, z〉.
I Minimizing the Lagrangian w.r.t. x and z, we obtain the dual problem

(D) qopt = max
y∈V

{
q(y) ≡ −f ∗(AT (y))− g∗(−y)

}
.

Theorem [strong duality of the pair (P),(D)] fopt = qopt and the dual prob-
lem (D) attains an optimal solution.

The dual problem in minimization form:

(D ′) min
y∈V
{F (y) + G (y)}

F (y) ≡ f ∗(AT (y)),

G (y) ≡ g∗(−y).
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Rockafellar-Wets Theorem

Theorem [Rockafellar-Wets] Let σ > 0. Then

(a) If f : E→ R is a 1
σ -smooth convex function, then f ∗ is σ-strongly

convex.

(b) If f : E→ (−∞,∞] is a proper closed σ-strongly convex function,
then f ∗ : E→ R is 1

σ -smooth.
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The Dual Problem

(D ′) min
y∈V
{F (y) + G (y)}

Properties of F and G :

(a) F : V→ R is convex and LF -smooth with LF = ‖A‖2

σ ;

(b) G : V→ (−∞,∞] is proper closed and convex.
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Dual Proximal Gradient
Dual Proximal Gradient = Proximal Gradient on (D’)

Dual Proximal Gradient – dual representation

I Initialization: pick y0 ∈ V and L ≥ LF = ‖A‖2

σ .

I General step (k ≥ 0):

yk+1 = prox 1
LG

(
yk − 1

L
∇F (yk)

)
.

Theorem [rate of convergence of the dual objective function] Let {yk}k≥0

be the sequence generated by the DPG method with L ≥ LF = ‖A‖2

σ . Then
for any dual optimal solution y∗ k ≥ 1,

qopt − q(yk) ≤ L‖y0 − y∗‖2

2k
.
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Constructing a Primal Representation–Technical Lemma

Lemma. Let F (y) = f ∗(AT (y) + b),G (y) = g∗(−y), where f , g and A
satisfy properties (A),(B) and (C) and b ∈ E. Then for any y, v ∈ V and
L > 0 the relation

y = prox 1
LG

(
v − 1

L
∇F (v)

)
(9)

holds if and only if

y = v − 1

L
A(x̃) +

1

L
proxLg (A(x̃)− Lv),

where
x̃ = argmax

x

{
〈x,AT (v) + b〉 − f (x)

}
.
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Dual Proximal Gradient - Primal Representation

The Dual Proximal Gradient (DPG) Method – primal representation

Initialization: pick y0 ∈ V, and L ≥ ‖A‖
2

σ .
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) set xk = argmax
x

{
〈x,AT (yk)〉 − f (x)

}
;

(b) set yk+1 = yk − 1
LA(xk) + 1

LproxLg (A(xk)− Lyk).

I The sequence {xk}k≥0 generated by the method will be called “the primal
sequence”, although its elements are not necessarily feasible.
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The Primal-Dual Relation

Obtaining a rate of the primal sequence is done using the following result.

Lemma [primal-dual relation] Let ȳ ∈ dom(G ), and let

x̄ = argmax
x∈E

{
〈x,AT (ȳ)〉 − f (x)

}
.

Then

‖x̄− x∗‖2 ≤ 2

σ
(qopt − q(ȳ)).
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O(1/k) Rate of the Primal Sequence Generated by DPG

Theorem. Let {xk}k≥0 and {yk}k≥0 be the primal and dual sequences
generated by the DPG method with L ≥ LF . Then for any optimal dual
solution y∗ and k ≥ 1,

‖xk − x∗‖2 ≤ L‖y0 − y∗‖2

σk
.

Proof.

‖xk − x∗‖2 ≤ 2

σ
(qopt − q(yk)) ≤ 2

σ

L‖y0 − y∗‖2

2k
,
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Fast Dual Proximal Gradient (FDPG)
Fast Dual Proximal Gradient = FISTA on (D’)

Fast Dual Proximal Gradient (FDPG) - dual representation

I Initialization: L ≥ LF = ‖A‖2

σ ,w0 = y0 ∈ E, t0 = 1.

I General Step (k ≥ 0):

(a) yk+1 = prox 1
L
G

(
wk − 1

L
∇F (wk)

)
;

(b) tk+1 =
1+
√

1+4t2
k

2
;

(c) wk+1 = yk+1 +
(

tk−1
tk+1

)
(yk+1 − yk).

Theorem [rate of convergence of the dual objective function] Let {yk}k≥0

be the sequence generated by the FDPG method with L ≥ LF = ‖A‖2

σ .
Then for any dual optimal solution y∗ of and k ≥ 1,

qopt − q(yk) ≤ 2L‖y0 − y∗‖2

(k + 1)2
.
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Fast Dual Proximal Gradient - Primal Representation

The Fast Dual Proximal Gradient (FDPG) Method - primal repre-
sentation

Initialization: L ≥ LF = ‖A‖2

σ ,w0 = y0 ∈ V, t0 = 1.
General step (k ≥ 0):

(a) uk = argmax
u

{
〈u,AT (wk)〉 − f (u)

}
.

(b) yk+1 = wk − 1
LA(uk) + 1

LproxLg (A(uk)− Lwk)

(c) tk+1 =
1+
√

1+4t2
k

2

(d) wk+1 = yk+1 +
(

tk−1
tk+1

)
(yk+1 − yk).
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O(1/k2) Rate of the Primal Sequence Generated by FDPG

Theorem Let {xk}k≥0 and {yk}k≥0 be the primal and dual sequences gen-

erated by the FDPG method with L ≥ LF = ‖A‖2

σ . Then for any optimal
dual solution y∗ and k ≥ 1,

‖xk − x∗‖2 ≤ 4L‖y0 − y∗‖2

σ(k + 1)2
.

Proof.

‖xk − x∗‖2 ≤ 2

σ
(qopt − q(yk)) ≤ 2

σ
· 2L‖y0 − y∗‖2

(k + 1)2
.
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Example 1: Orthogonal Projection onto a Polyhedral set

(P1) min
x∈Rn

{
1

2
‖x− d‖2 : Ax ≤ b

}
.

I Fits model (P) with E = Rn,V = Rp, f (x) = 1
2‖x− d‖2,

g(z) = δBox[−∞e,b](z) =

{
0, z ≤ b,
∞, else.

and A(x) ≡ Ax.

I σ = 1

I argmax
x
{〈v, x〉 − f (x)} = v + d for any v ∈ Rn;

I ‖A‖ = ‖A‖2,2;

I AT (y) = ATy for any y ∈ Rp;

I proxLg (z) = PBox[−∞e,b](z) = min{z,b}.
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DPG and FDPG for solving (P1)

Algorithm 1 [DPG for solving (P1)]

I Initialization: L ≥ ‖A‖2
2,2, y

0 ∈ Rp.

I General Step (k ≥ 0):

(a) xk = ATyk + d;
(b) yk+1 = yk − 1

L
Axk + 1

L
min{Axk − Lyk , b}.

Algorithm 2 [FDPG for solving (P1)]

I Initialization: L ≥ ‖A‖2
2,2,w

0 = y0 ∈ Rp, t0 = 1.

I General Step (k ≥ 0):

(a) uk = ATwk + d;
(b) yk+1 = wk − 1

L
Auk + 1

L
min{Auk − Lwk , b};

(c) tk+1 =
1+
√

1+4t2
k

2
;

(d) wk+1 = yk+1 +
(

tk−1
tk+1

)
(yk+1 − yk).
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Example 11
2 : Orthogonal Projection onto the Intersection

of Closed Convex Sets

(P2) min
x∈E

{
1

2
‖x− d‖2 : x ∈ ∩pi=1Ci

}
.

I C1,C2, . . . ,Cp ⊆ E closed and convex.
I d ∈ E.
I Assume that ∩pi=1Ci 6= ∅ and that projecting onto each set Ci is an easy task.
I (P2) fits model (P) with

V = Ep, f (x) = 1
2‖x− d‖2, g(x1, x2, . . . , xp) =

∑p
i=1 δCi (xi ) and

A : E→ V,A(z) = (z, z, . . . , z︸ ︷︷ ︸
p times

)

I argmax
x
{〈v, x〉 − f (x)} = v + d for any v ∈ E;

I ‖A‖2 = p;
I σ = 1;
I AT (y) =

∑p
i=1 yi for any y ∈ Ep;

I proxLg (v1, v2, . . . , vp) = (PC1 (v1),PC2 (v2), . . . ,PCp (vp)) for any v ∈ Ep.
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DPG and FDPG for Solving (P2)

Algorithm 3 [DPG for solving (P2)]

I Initialization: L ≥ p, y0 ∈ Ep.

I General Step (k ≥ 0):

(a) xk =
∑p

i=1 yk
i + d;

(b) yk+1
i = yk

i − 1
L

xk+ 1
L
PCi (xk−Lyk

i ), i = 1, 2, . . . , p.

Algorithm 4 [FDPG for solving (P2)]

I Initialization: L ≥ p,w0 = y0 ∈ Ep, t0 = 1.

I General Step (k ≥ 0):

(a) uk =
∑p

i=1 wk
i + d;

(b) yk+1
i = wk

i − 1
L

uk + 1
L
PCi (uk − Lwk

i ),
i = 1, 2, . . . , p;

(c) tk+1 =
1+
√

1+4t2
k

2
;

(d) wk+1 = yk+1 +
(

tk−1
tk+1

)
(yk+1 − yk).
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Orthogonal Projection onto a Polyhedral Set Revisited

I Algorithm 4 can also be used to find an orthogonal projection of a point
d ∈ Rn onto the polyhedral set C = {x ∈ Rn : Ax ≤ b}, where
A ∈ Rp×n,b ∈ Rp.

I C can be written as C = ∩pi=1Ci , where Ci = {x ∈ Rn : aT
i x ≤ bi} with

aT
1 , a

T
2 , . . . , a

T
p being the rows of A.

I PCi (x) = x− [aT
i x−bi ]+

‖ai‖2 ai .

Algorithm 5 [FDPG for solving (P1)]

I Initialization: L ≥ p,w0 = y0 ∈ Ep, t0 = 1.

I General Step (k ≥ 0):

(a) uk =
∑p

i=1 wk
i + d;

(b) yk+1
i = − 1

L‖ai‖2 [aT
i (uk − Lwk

i )− bi ]+ai , i = 1, 2, . . . , p;

(c) tk+1 =
1+
√

1+4t2
k

2
;

(d) wk+1 = yk+1 +
(

tk−1
tk+1

)
(yk+1 − yk).
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Comparison Between DPG and FDPG – Numerical
Example

I Consider the problem of projecting the point (0.5, 1.9)T onto a dodecagon -
a regular polygon with 12 edges represented as the intersection of 12
half-spaces.

I The first 10 iterations of the DPG (Algorithm 3) and FDPG (Algorithm 4/5)
methods with L = p = 12 can be seen below.
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Example 2: One-Dimensional Total Variation Denoising

(P3) min
x∈Rn

{
1

2
‖x− d‖2

2 + λ‖Dx‖1

}
,

I Fits model (P) with
E = Rn,V = Rn−1, f (x) = 1

2‖x− d‖2(σ = 1), g(y) = λ‖y‖1, A(x) ≡ Dx

I argmax
x
{〈v, x〉 − f (x)} = v + d for any v ∈ E;

I ‖A‖2 = ‖D‖2
2,2 ≤ 4;

I σ = 1;

I AT (y) = DTy for any y ∈ Rn−1;

I proxLg (y) = TλL(y).
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Example 3 Contd.

Algorithm 6 [DPG for solving (P3)]

I Initialization: y0 ∈ Rn−1.

I General Step (k ≥ 0):

(a) xk = DTyk + d;
(b) yk+1 = yk − 1

4
Dxk + 1

4
T4λ(Dxk − 4yk).

Algorithm 7 [FDPG for solving (P3)]

I Initialization: w0 = y0 ∈ Rn−1, t0 = 1.

I General Step (k ≥ 0):

(a) uk = DTwk + d;
(b) yk+1 = wk − 1

4
Duk + 1

4
T4λ(Duk − 4wk);

(c) tk+1 =
1+
√

1+4t2
k

2
;

(d) wk+1 = yk+1 +
(

tk−1
tk+1

)
(yk+1 − yk).

Amir Beck Proximal-Based Methods 172 / 181



Numerical Example

I n = 1000

I d is a noisy measurement of a step function.
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Numerical Example Contd.
I 100 iterations of Algorithms 6 (DPG) and 7 (FDPG) initialized with y0 = 0.
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I Objective function values of the DPG and FDPG methods after 100 iterations
are 9.1667 and 8.4621 respectively; the optimal value is 8.3031.
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The Dual Block Proximal Gradient Method

The Model
(Q) min

x∈E

{
f (x) +

∑p
i=1 gi (x)

}
.

Underlying Assumptions.

(A) f : E→ (−∞,+∞] is proper closed and σ-strongly convex (σ > 0).

(B) gi : E→ (−∞,+∞] is proper closed and convex for any i ∈ {1, 2, . . . , p}.
(C) ri(dom(f )) ∩ (∩pi=1 ri(dom(gi ))) 6= ∅.
Problem (Q) fits model (P) with
V = Ep, g(x1, x2, . . . , xp) =

∑p
i=1 gi (xi ),A(z) = (z, z, . . . , z︸ ︷︷ ︸

p times

).

I ‖A‖2 = p;

I AT (y) =
∑p

i=1 yi for any y ∈ Ep;

I proxLg (v1, v2, . . . , vp) = (proxLg1
(v1),proxLg2

(v2), . . . ,proxLgp (vp))
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FDPG for Solving (Q)

Algorithm 9 [FDPG for solving (Q)]

I Initialization: w0 = y0 ∈ Ep, t0 = 1.

I General Step (k ≥ 0):

(a) uk = argmax
u∈E

{〈
u,

p∑
i=1

wk
i

〉
− f (u)

}
;

(b) yk+1
i = wk

i − σ
p

uk + σ
p
prox p

σ
gi

(uk − p
σ

wk
i ), i = 1, 2, . . . , p;

(c) tk+1 =
1+
√

1+4t2
k

2
;

(d) wk+1 = yk+1 +
(

tk−1
tk+1

)
(yk+1 − yk).

Amir Beck Proximal-Based Methods 176 / 181



The Dual Block Proximal Gradient Method

I A major disadvantage of Algorithm 9 is the stepsize it uses.

I A way to circumvent this drawback is to employ a dual block proximal
gradient method.

I A dual problem to (Q):

(DQ) qopt = max
y∈Ep

−f ∗(∑p
i=1 yi )−

∑p
i=1 g

∗
i (−yi )︸ ︷︷ ︸
Gi (yi )

 .

I Suppose that the current point is yk = (yk
1 , y

k
2 , . . . , y

k
p). At each iteration we

pick an index i according to some rule and perform a proximal gradient step
on ith block:

yk+1
i = proxσGi

(
yk
i − σ∇f ∗(

∑p
j=1 yk

j )
)
.
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Dual Representation

The Dual Block Proximal Gradient (DBPG) Method – dual representation

I Initialization: pick y0 = (y0
1, y

0
2, . . . , y

0
p) ∈ Ep.

I General step (k ≥ 0):
I pick an index ik ∈ {1, 2, . . . , p};

I compute yk+1
j =

{
proxσGik

(
yk
ik
− σ∇f ∗(

∑p
j=1 yk

j )
)
, j = ik ,

yk
j , j 6= ik .

Lemma. The relation yi = prox 1
LGi

(
vi − 1

L∇f
∗(
∑p

j=1 vj)
)

holds if and only

if

yi = vi −
1

L
x̃ +

1

L
proxLgi (x̃− Lvi ) ,

where x̃ = argmax
x∈E

{
〈x,
∑p

j=1 vj〉 − f (x)
}
.
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Primal Representation
The Dual Block Proximal Gradient (DBPG) Method – primal
representation

Initialization. pick y0 = (y0
1, y

0
2, . . . , y

0
p) ∈ E.

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick ik ∈ {1, 2, . . . , p}.

(b) set xk = argmax
x∈E

{
〈x,
∑p

j=1 yk
j 〉 − f (x)

}
.

(c) set yk+1
j =

{
yk
ik
− σxk + σproxgi/σ

(
xk − yk

ik
/σ
)
, j = ik ,

yk
j , j 6= ik .

Possible stepsize strategies.

I cyclic. ik = (k mod p) + 1.

I randomized. ik is randomly picked from {1, 2, . . . , p} by a uniform
distribution.
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Rates of Convergence of the Cyclic and Randomized
DBPG Methods

I O(1/k) rates of convergence of the sequences of dual objective function
values follow by the corresponding results on the block proximal gradient
method.

I O(1/k) rates of the primal sequence follow by the primal-dual relation.

Cyclic:

(a) qopt − q(ypk) ≤ max
{(

1
2

)(k−1)/2
(qopt − q(y0)), 8p(p+1)2R2

σ(k−1)

}
.

(b) ‖xpk − x∗‖2 ≤ 2
σ max

{(
1
2

)(k−1)/2
(qopt − q(y0)), 8p(p+1)2R2

σ(k−1)

}
.

Randomized:

(a) qopt − Eξk (q(yk+1)) ≤ p
p+k+1

(
1

2σ‖y
0 − y∗‖2 + qopt − q(y0)

)
.

(b) Eξk‖xk+1 − x∗‖2 ≤ 2p
σ(p+k+1)

(
1

2σ‖y
0 − y∗‖2 + qopt − q(y0)

)
.
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THE END

THANK YOU FOR YOUR ATTENTION
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