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Tutorial Overview

The tutorial is all about first order methods, specifically those based on proximal
computations

» Background: extended real-valued functions, subgradients, conjugate
functions, the proximal operator

proximal gradient

fast proximal gradient (FISTA)
smoothing

block proximal gradient

vV vV.v. v .Yy

dual proximal gradient
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Complement of Tutorial Overview

Unfortunately, the following important topics are not included:
» primal and dual projected subgradient
non-Euclidean algorithms (mirror descent, non-Euclidean proximal gradient)
conditional gradient
alternating minimization
ADMM

vV V. v VY
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Underlying Spaces

> We will assume that the underlying vector spaces, usually denoted by V or E,
are finite dimensional real inner product spaces with endowed inner product
(-,+) and endowed norm || - ||.

Euclidean space: a finite dimensional real vector space equipped

with an inner product (-,-) endowed with the norm ||x|| = /{(x,x),
which is also called the Euclidean norm.

» Except for one case, we will always assume that the underlying vector space
is Euclidean
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Extended Real-Valued Functions

» D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and
optimization (2013).
» R. T. Rockafellar, Convex analysis (1970).
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Extended Real-Valued Functions

> An extended real-valued function is a function defined over the entire
underlying space that can take any real value, as well as the infinite values

—o0 and oo.
» Infinite values arithmetic:

a+ oo =oc0+a = oo (—o0 < a < o0),
a—oco=—-ocot+a =-—oo (=00 < a < o0),
a-co=o00-a =00 (0 < a < oo0),
a-(—o0)=(—o0)-a = —oo (0 < a < oo0),
a-oco=o00"-a = —oo (o0 < a<0),
a-(—o0)=(—00) a =oo (~oo <a<0),
0-co=00-:-0=0:(—00)=(—00):0 =0.

» For an extended real-valued function f : E — [—00, 00], the effective domain
or just the domain is the set

dom(f) ={x € E: f(x) < co}.

» For any subset C C E, the indicator function of C is

st ={ % J5¢
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Closedness

> The epigraph of an extended real-valued function f : E — [—00, 00] is defined
by
epi(f) = {(x,y) : f(x) <y,xe€E,y e R} CExR.

> A function f : E — [—00, 0] is called proper if it does not attain the value
—o0 and there exists at least one X € E such that f(X) < oo, meaning that

dom(f) # 0.

> A function f : E — [—00, 00] is called closed if its epigraph is closed.

Theorem. The indicator function d¢ is closed if and only if C is
closed. J

Proof.
epi(f) = {(x,y) €EExR:dc(x) <y} =C xRy,

which is evidently closed if and only if C is closed. [J
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Example

oo, else.

f is closed.
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Lower Semicontinuity

Definition

> A function f : E — [—00, 0] is called lower semicontinuous at x € E if

f(x) < liminf f(x,),

n— o0

for any sequence {x,}n,>1 C E for which x, = x as n — 0.
> A function f : E — [—00, 00] is called lower semicontinuous if it is lower
semicontinuous at each point in E.
Theorem. The following claims are equivalent:
(i) f is lower semicontinuous.
(ii) f is closed.
(iii) for any a € R, the level set

Lev(f,a) = {x e R": f(x) < a}

is closed.
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Operations Preserving Closedness

Theorem.

(a) Let A:E — V be a linear transformation and b € V, and let
f:V — (—o0, 0] be closed. Then the function g : E — [—o0, 0c] given by

g(x) = f(A(x) + b)

is closed.
(b) Let f1,f,...,fm: E— (—o00,00] be extended real-valued closed functions,
and let a1, @, ..., o, € Ry. Then the function £ = Y7, af; is closed.

(c) Let fi : E — (—o00,00],i € | be extended real-valued closed functions, where
| is a given index set. Then the function

f(x) = max f;(x).

iel

is closed.
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Weierstrass theorem for closed functions

Theorem. Let f : E — (—o0, 0] be a proper closed function, and assume
that C is a compact set satisfying C N dom(f) # (). Then

(a) f is bounded below over C.
(b) f attains a minimizer over C.

> A proper function f : E — (—o0, o] is called coercive if

Theorem. (attainment under coerciveness) Let f : E — (—o0, 0] be a
closed proper and coercive function and let S C E be a nonempty closed
set satisfying S N dom(f) # (). Then f attains a minimizer over S.
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Convex Extended Real-Valued Functions

> An extended real-valued function is called convex if epi(f) is convex.

» f:E — (—00, 0] is convex < dom(f) is convex and the real-valued function
f : dom(f) — R which is the restriction of f to dom(f) is convex over
dom(f).

> Result: A proper function f : E — (—o0, 0] is convex iff

FOXx 4 (1= N)y) < M(x) 4+ (1 = N)f(y) forall A € [0,1],x,y € E

» Jensen's inequality

for any A € A (k being an arbitrary positive integer), x1,Xp, ..., Xx € E.
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Operations Preserving Convexity

Theorem.

(a) Let A:E — V be a linear transformation from E to V and b € V, and
let f:V — (—o0, 0] be convex. Then g : E — (—o0, o] given by

g(x) = f(A(x) + b)

is convex.
(b) Let f1,f2,...,fm: E— (—o00,00] be convex, and let
Q1,009,...,0an € Ry, Then the function 27;1 «;f; is convex.

(c) Let f; : E — (—o0,00],i € I be convex, where [ is a given index set.
Then the function

f(x) = max fi(x)

is convex.
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Closedness Vs. Continuity

Closed functions are not necessarily continuous, but...

> If f: E — [—00,00] is continuous over dom(f), which is assumed to be
closed, then it is closed.

» 1D closed and convex functions are always continuous over their domain.

» Not correct for multi-dimensional functions...

Example: the lj-norm function f : R” — R given by

f(x) = lIx[lo = #{i : x; # 0}.

f is closed but not continuous.

Amir Beck Proximal-Based Methods

14 / 181



Support Functions

» Let C C E be nonempty. Then the support function of C,
oc:E— (—o0,00] is given by

oc(y) = Téag(y, X).

Theorem. Let C C E be a nonempty set. Then o¢ is a closed and convex
function. J

Proof. o¢ is a maximum of convex functions.
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Examples of Support Functions

I C [ oc(y) | assumptions Example No.
{b1,bs,...,b,} max;=1,2,...,n{bi,y) bicE 1
K Oko(y) K — cone 2
RT e () E=F 3
A, max{y1,¥2, ..., ¥n} E=R" 4
{X cR" : Ax < 0} 6{AT>\:>\ERT}(y) E j ]Rn’ A ¢ 5
Rm n
{xeR":Bx=>b} | (y,xo)+ 5Range(BT)(Y) E=R" B¢ 6
Rmxn' b e
R™ Bxo=b
By[0,1] lIyll- [[ - II - arbitrary 7
norm
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A Discontinuous Closed and Convex Function
If

X2
C= {(xhxz):xl—&-?z §O}.

Then
Ly >0
2y ° Y1
oc(¥) =190, y=y=0
oo, else.
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Subgradients

D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and
optimization (2013).
J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization

(2006).

J. B. Hiriart-Urruty and C. Lemarechal. Convex analysis and minimization
algorithms. | (1996).

Y. Nesterov. Introductory lectures on convex optimization (2004).
R. T. Rockafellar, Convex analysis (1970).
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Subgradients

» Definition: Let f : E — (—o0, 00| be a proper function, and let x € dom(f).
A vector g € E is called a subgradient of f at x if

f(y) > f(x)+ (g,y — x) for all y € E.

> The set of all subgradients of f at x is called the subdifferential of f at x and
is denoted by Of(x):

f(x)={geE:f(y)>f(x)+(g,y—x) forally e E}.

When x ¢ dom(f), we define 9f(x) = 0.
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Closedness and Convexity of the Subdifferential Set

Theorem. Let f : E — (00, 00] be an extended real-valued function. Then
the set 9f(x) is closed and convex for any x € E. J

Proof. For any x € E,

f(x) = () Hy,

yek

where Hy = {g € E: f(y) > f(x) + (g,y — x)} . Since the sets H are half-spaces,
and in particular, closed and convex, it follows that 9f(x) is closed and convex. O
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Subdifferentiability

> If 9f(x) # 0, f it is called subdifferentiable at x.
>

dom(9f) ={x € E: 9f(x) £ 0}.

Example:

f(x)_{ —VX, x>0,

0, else.

1.5 L n n L
—-0.5 [e] 0.5 1 1.5 2
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Existence and Boundedness of 0f(x)

Theorem. Let f : E — (—o0, 00] be a proper convex function.
> If X € int(dom(f)), then Of(X) is nonempty and bounded.
> If X € ri(dom(f)), then Of(X) is nonempty.

v

Corollary. Let f : E — R be a convex function. Then f is subdifferentiable
over E.

v

Theorem. Let f : E — (—o0,00] be a proper convex function, and assume
that X C int(dom(f)) is nonempty and compact. Then Y = (J ., Of(x)
is nonempty and bounded.

V.
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The Directional Derivative

> Let f: E — (—o00,00] be a proper extended real-valued function and let
x € int(dom(f)). Suppose that 0 # d € E. The directional derivative at x in
the direction 0 # d € E, if exists, is defined by

Flod)= tim T od) =),

a—0t «

Theorem. Let f : E — (—o0,00] be a proper convex function, and let
x € int(dom(f)). Then for any d € E, the directional derivative f’'(x;d)
exists.
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Differentiability

Definition. For a given function f : E — (—o0, 00|, and x € int(dom(f)),
we say that f is differentiable at x if there exists g € [E such that

f(x+h) = f(x) + (g h) + o(||h]).

In other words, limn_o W =0.

g is called the gradient, and is denoted by V£ (x)

Theorem. Let f : E — (—o0,00], and suppose that f is differentiable at
x € int(dom f). Then for any d # 0

f'(x;d) = (VF(x),d).

f(xtad)—f(x)—(Vf(x),ad) _ f'(xd)—(Vf(x),d)

Proof. 0 = lim and hence
a—0* lod]] Midll )

f'(x;d) = (VF(x),d). O
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The Subdifferential at Differentiability Points

Theorem. Let f : E — (—o0, c0] be a proper convex function, and let x €
int(dom(f)). If f is differentiable at x, then 9f(x) = {Vf(x)}. Conversely,
if £ has a unique subgradient at x, then f is differentiable at x and 0f(x) =

{VF(x)}.

E le: f(x) = E = R"). Then 0f(x) = {Hxxl\z}’ x#0,
xample: (x) = [x| (E = R"). Then 97 (x) { S A
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What is the Gradient?

» Example 1: E = R" with (x,y) = x"y: Vf(x) = Ds(x)

Df(X) =

» Example 2: E = R" with (x,y) = x"Hy with H € S
V£(x) = H1D¢(x).

26 / 181
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Subdifferential Calculus

Theorem. Let fi, f, : R" — (—o00, 0o] be proper extended real-valued convex
functions. Let x € dom(f;) N dom(#). Then

(a) The following inclusion holds (weak result):

Ofi(x) + 0f(x) € O(f + 2)(x)

(b) If in addition either x € int(dom(f)) N int(dom(f2)), then (strong
result):
0h(x) + 9h(x) = A(f + £)(x).
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Sum Rule of Subdifferential Calculus - General Result

Theorem. Let fi,f,...,f, be proper convex functions and assume that
N, ri(dom £;) # (. Then for any x

Of (x) = 0fi(x) + 0h(X) + ... + fm(x)
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Subdifferential Calculus - Affine Change of Variables

Theorem. Let f : E — (—o0, 00| be a proper convex function and A : V —
E be a linear transformation. Let h(x) = f(.A(x) + b) with b € E. Assume
that h is proper:

dom(h) = {x € V: A(x) + b € dom(f)} # 0.

(a) (weak affine transformation rule of subdifferential calculus) For
any x € dom(h),

AT(9f (A(x) + b)) C dh(x).

(b) (affine transformation rule of subdifferential calculus) If
x € int(dom(h)) and A(x) + b € int(dom(f)), then

oh(x) = AT(9f(A(x) + b)).
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Chain Rule of Subdifferential Calculus

Theorem Let f : E — R be a convex function and let g : R — R be a non-
decreasing convex function. Let x € E and suppose that g is differentiable
at the point f(x). Let h=gof. Then

Oh(x) = g'(f(x))of(x).
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Max Rule of Subdifferential Calculus

Lemma. Let fi,f,...,fn : E = (—o00, 0] be proper extended real-valued
convex functions and let

f(x) = max{f(x), a(x), ..., fm(x)}.

Let x € (), int(dom(f;)). Then

Of (x) = conv U Ofi(x)
i€l(x)

I(x)={ie{1,2,...,m}: fi(x) = f(x)}.

where
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Lipschitz Continuity and Boundedness of Subgradients

Theorem.Let f : E — (—o0, o0] be a proper and convex function. Suppose
that X C int(dom f). Consider the following two claims:

(i) [f(x) = f(y)l < Lllx — ]| for any x,y € X;
(ii) |lgll« < L for any g € 9f(x),x € X.
Then
(a) the implication (ii) = (i) holds;
(b) if X is open then (/) holds if and only if (i) holds.

Amir Beck Proximal-Based Methods 32 /181



Fermat's Optimality Condition

Theorem. Let f : E — (—o0,00] be an extended real-valued convex func-
tion. Then
x* € argmin{f(x) : x € E} (1)

if and only if
0 € Of (x*)

Proof. 0 € Of(x*) is satisfied iff
f(x) > f(x*) 4+ (0,x — x*) for any x € dom(f),

which is the the same as (1).
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Fermat-Weber Problem

weights wi,wa, . ..,wn, the Fermat-Weber problem is given by

(FW) min {f(x) = Zw;Hx - a,-||2} :

Given m different points in RY, A = {a1,ay,...,am} (“anchors”) and m positive

Z"’lw,ux ;,.||2 x¢ A,

=2 0(x) = { SR+ BlOwl, x = ay( € [m]).

» By Fermat's optimality optimality condition, x* is an optimal solution iff
0 € If(x*), meaning ifF
» x*¢ Aand Y7 w; Hx*—a = =0 or for some j € {1,2,..., m}
x* = aj and “Z":l*"#fw"ﬁ“z < wj.
[Sturm, 1884] [Weiszfeld, 1937]

Amir Beck Proximal-Based Methods
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Optimality Conditions for the Composite Model (Mixed
Convex/Nonconvex)

Theorem. Let f : E — (—o0, o0] be proper, and let g : E — (—o0, 0] be
a proper convex function such that dom(g) C int(dom(f)). Consider the
problem

(P) minf(x)+ g(x).

(a) (necessary condition) If x* € dom(g) is a local optimal solution of
(P), and f is differentiable at x*, then

— VF(x*) € 0g(x"). (2)
(b) (necessary and sufficient condition for convex problems)

Suppose that f is convex. If f is differentiable at x* € dom(g), then
x* is a global optimal solution of (P) if and only if (2) is satisfied.
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Stationarity in Composite Models
(P) minf(x) + g(x). J

> f:E — (—o0,00] proper.
> g E — (—o0,00] proper convex.
» dom(g) C int(dom(f)).

Definition A point x* € dom g in which f is differentiable is called a sta-
tionarity point of (P) if —Vf(x*) € dg(x*) J

Example: If g(x) = dc(x) for convex C, then stationarity is the same as
(VF(x*),x —x*) >0
Example: min f(x) + Al|x||1 (f : R" — R), then stationarity is

* = _)\, ,* > 07
Of(x’) = i* <0
0% | e[-A A, x*=0.
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Conjugate Functions

D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and
optimization (2013).

J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization
(2006).

J. B. Hiriart-Urruty and C. Lemarechal. Convex analysis and minimization
algorithms. | (1996).

R. T. Rockafellar, Convex analysis (1970).
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Conjugate Functions

Definition. Let f : E — (—o0, 00] be a proper extended real-valued function.
The function f : E — [—00, 00| defined by

(y) = max{ (y,x) — F(x)}.

is called the conjugate function of f.

Result: Conjugate functions are always closed and convex (regardless of the
properties of f)

Example: f = dc, where C C E is nonempty. Then for anyy € E

F*(y) = max{{y,x) — dc(x)} = max({y,x) = oc(y).

Amir Beck Proximal-Based Methods 38 /181



The Biconjugate

The conjugacy operation can be invoked twice resulting with the biconjugacy
operation. Specifically, for a function f we define

F(x) = max(x,y) = £*(y)

Theorem (f > f**). Let f : E — [—o00,00] be an extended real-valued
function. Then f(x) > f**(x) for any x € E. J

Theorem. Let f : E — (—o0,00] be a closed and proper extended real-
valued function. Then f** = f. J
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Fenchel's Inequality

Theorem. Let f : E — (—o0, o0] be an extended real-valued proper function.
Then forany x e E;y € E

f(x) +*(y) > (y,x).
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Simple Calculus Rules

function definition conjugate
g(xla s 7Xm) = erll f,'(X,') g*(y1, <o ;Ym) = 2:11 fi*(yi)
g(x) = af(x) g*(y) = af*(y/a)
g(x) = af(x/a) g*(y) = af*(y)
f(Ax—a)+(b,x)+c | (AT)(y—b)) +(ay)—c—(ab)
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Conjugates of Simple Functions

function (f) dom f conjugate (f*) assumptions
Ix"TAx+b'x+c R" 1(y-b)"A"*(y-b)— | A-0,AcR™" be
c R" ceR
27:1 Xi |Og Xi Rl 27:1 i1 -
ST xilog x; A, log (37, ") -
log (7.1 €7) R™ [ XL, yilogy, -
(dom f* = A,)
dc(x) C oc(x) 0 # C arbitrary
oc(x) R" dc(x) 0 # C closed, convex
[Ix[| R” 0By, 10.1] | - || arbitrary norm
f\/ll — []x|I? By 110,1] }/Hsz +1 Il arliitragy norm
1;|X|p2 R" §|}’\q2 P>1,;.+g=1
Gkl R slylls |- || arbitrary norm
Amir Beck Proximal-Based Methods
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Conjugate Subgradient Theorem

Theorem. Let f : R” — (—o0, 00] be a proper convex extended real-valued
function. The following two claims are equivalent for any x € E,y € E:

(1) (xy) = F(x) + F(y).

(i) y € Of(x).
If, in addition f is closed, then (i) and (ii) are equivalent to
(iii) x € Of*(y).

v

» If f is proper closed and convex, the conjugate subgradient theorem can be
written as

of*ly) = argTaX{<y7X>—f(X)},
of(x) = arg;naX{<x,y>—f*(Y)}
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Fenchel's Duality Theorem

(P) min F(x) + g(x).

Lagrangian duality:
> ming zer{f(x) + g(z) : x =z}
» Lagrangian:

L(x,z;y) = f(x) + g(z) + (y,z = x) = = [(y,x) — f(x)] = [(~y,2) — g(2)].

> Dual objective function:q(y) = miny ; L(x,z;y) = —f*(y) — g*(—y)
Fenchel's dual problem:

(D) max{—f*(y) —&"(-y)}-

Theorem (Fenchel’s duality theorem) Let f,g : E — (—00, 0] be proper
convex functions. If ri(dom(f)) Nri(dom(g)) # 0, then

min{f(x) + g(x)} = max{—F*(y) — &"(=¥)},

and the maximum in the right-hand problem is attained whenever it is
finite.

V.
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The Proximal Operator

J. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc.
Math. France (1965).

H. Bauschke and P. L. Combettes. Convex analysis and monotone operator
theory in Hilbert spaces (2011).

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward
backward splitting, Multiscale Model. Simul. (2005).

N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in
Optimization (2014).
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The Proximal Operator

Definition. Given a closed, proper and convex function g, the proximal
mapping of g is defined by

. 1
prox,(x) = argmin {g(u) 4 §||u — x||2} :
uck
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Examples
» Constant. If f = ¢ for some ¢ € R, then

. 1 ,
proxq(x) = argminq c+ = |lu — x||“ p =x
ucE 2
The identity mapping.
> Affine. Let f(x) = (a,x) + b, where a € E and b € R. Then

1
proxs(x) = argmin {(a, u)+b+ =|ju— x|2}
ucE 2

= X—a.

> Let f(x) = 2x"Ax+ b x+ ¢, where A € S7,b € R” and ¢ € R. The vector
proxs(x) is the solution of

1 1
mins —u’Au+b u+c+ Z|lu—x|?}.
uck | 2 2

The optimal solution is attained at u satisfying (A + )u = x — b, and hence

proxs(x) =u= (A +1)"}(x — b).
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The Orthogonal Projection

» Definition. Given a nonempty closed and convex set C C E and x € E, the
orthogonal projection operator P¢ : E — C is defined by

Pc(x) = argmin ||y — x]|.
yeC

First projection theorem. Let C C E be a nonempty closed convex set.
Then Pc(x) is a singleton.

4

Second projection theorem. Let C C [E be a nonempty closed and convex
set. Let u € C. Then u = P¢(x) if and only if

(x—u,y—u) <0 foranyye C.
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Prox of Indicator = Orthogonal Projection

» If C C E is nonempty, then proxs. = Pc

1
prox;,(x) = argmin {5c(u) + §||u - x||2} = argmin |ju — x||? = Pc(x).
uck

ueC

First prox theorem. Let f : E — (—o00,00] be a proper closed and convex
function. Then prox,(x) is a singleton for any x € E.

Proof?
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Strongly Convex Functions

Definition. A function f : E — (—o0, 0] is called o-strongly convex for a
given o > 0, if dom(f) is convex and the following inequality holds for any
x,y € dom(f) and X € [0, 1]:

FAx+ (1= A)y) < Af(x) + (1= A)f(y) - %UA(l = N)llx —ylI2.

» A function is strongly convex if it is o-strongly convex for some o > 0.

Theorem. f : E — (—o0, o] is a strongly convex function if and only if the
function f(-) — || - [|? is convex.

v

> The proof is extremely straightforward.
» The above characterization is relevant only for Euclidean spaces.
» o-strongly convex+convex is o-strongly convex.

Example: f(x) = 1x"Ax+b"x+c (A €S", b€ R", c €R) is strongly convex
with parameter Apin(A).
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First Order Characterizations of Strong Convexity

Theorem. Let f : E — (—o00, 0] be a proper closed and convex function.
Then for a given o > 0, the following three claims are equivalent:

(i) f is o-strongly convex.
(ii)
F(y) = F() + (&Y = %) + Zly = x|
for any x € dom(9f),y € dom(f) and g € Jf(x).
(iii)
(8x — gy x—y) > oflx —y|?
for any x,y € dom(0f) and gy € 0f(x), gy € Of(y).
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Existence and Uniqueness of a Minimizer of Closed
Strongly Convex Functions

Theorem. Let f : E — (—o0, 00] be a proper closed and o-strongly convex

function (o > 0). Then

(a) f has a unique minimizer.

(b) f(x) — f(x*) > Z||x — x*|| for all x € dom(f), where x* is the unique
minimizer of f.

V.

Conclusion: the first prox theorem.

First prox theorem. Let f : E — (—o0, 0] be a proper closed and convex
function. Then prox(x) is a singleton for any x € E.

4

Proof.
» For any x € E,

prox(x) = argmin f(u, x),
uck

where (u,x) = f(u) + 2 lu— x|
» 7(-,x) is a proper closed and 1-strongly convex function.
> Therefore, there exists a unique minimizer to the problem in (3).

Amir Beck Proximal-Based Methods

)

52 / 181



Necessity of the Conditions in the First Prox Theorem

e When f is not convex and/or closed, the prox is not guaranteed to uniquely

exist, or even to exist at all.

0,
0, x #0,
gx) = {—)\ xiO

0, x#0,
g3(X) = {)\’ Xio.

g1(x)

{0}, Ixl<v2x, )
prox,, (x) = x, prox,, (x) = ¢ {x}, Ix| > V2, , Prox,, (x) = { i )
{0,x}, x| =V2\.

» Uniquness is not guaranteed in any case.

» Existence is guaranteed whenever f is proper closed and the function
u > f(u) + 3lu—x||? is coercive.
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Basic Calculus Rules

[ f(x) prox(x) assumptions |
> fi(xi) proxs (x1) X - -+ X proxg (Xm)
g(Xx + a) % [proxkzg(a—i-)\x)—a] A#£0,acE, g
proper
Ag(x/\) Aprox, A(x/X) A > 0, g proper
g(x) + SIx|I> + prox%g(ﬁ a € Ec >
(a,x) + ” 0, € R g
proper
g(A(x) +b) x+ L AT (prox, (A(x) +b) —A(x)—b) [ b € R™,
AV - R™,
g closed
proper convex,
Ao AT = al,
a>0
e (e X770
g(|Ix g proper
(” ”) {u:Jul = proxg(O)}, x=0 closed convex,
dom(g)  C
[0, )

Amir Beck
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Examples or Prox Computations

I f [ domf ] prox; [ assumptions I
IxTAx + b x + ¢ R" (A+1)"X(x —b) AcsS] beER ceR
Allx]| E — ”—i‘H Euclidean norm, A > 0
+
EIR iy X[ — el o 5gn(®) x>0
n
Xit 1 [x2+4N
AT logx; U <’;> A>0
i=1
5c(X) E Pc(X) C g E
Ao c(x) E x — APc(x/\) C closed and convex
Allx]| E X — /\PB”,H 0,11(x/ ) arbitrary norm
Amax{x1,x2,...,Xn} R" xfproxA (x/A) A>0
Adc(x) E x + min Pc(x —x) | C closed convex
2 dc(x)? E A+1 Pc( ) )\— C closed convex
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Prox of ;-Norm
> g(x) = Allx[l1 (A >0)
> g(x) =Y 7 p(xi), where ©(t) = A|t|.

> prox,(s) = Ti(s), where Ty is defined as

y=A y=>A
Ta(y) = [lyl = Al4sgn(y) = ¢ O, ly| <A,
y+A ys-A

is the soft thresholding operator. L a4 w0 w15 e

> By the separability of the h-norm, prox,(x) = (7x(x;))7;. We expend the
definition of the soft thresholding operator and write

proxg(x) = Ta(x) = (Ta(x)))j=1 = [Ix] — Aely © sgn(x).
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The Second Prox Theorem
Theorem Let g : E — (—o0,00] be a proper, closed and convex function.
Then
(i) u= prox,(x).
(i) x —u € dg(u).
(iii) g(y) > g(u) + (x —u,y —u) for any y € E.

Proof.

> (i) is satisfied if and only if u a minimizer of the problem

i { () + 3~ xI2}.

» By Fermat’s optimality condition, this is equivalent to (ii).
» The equivalence to (iii) follows by the definition of the subgradient.

Generalization of the second projection theorem!
Corollary: x is a minimizer of a closed, proper, convex function f iff x = prox,(x)
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Firm Nonexpansivity of the Prox Operator

Theorem. For any x,y € E
(i) (x =y, prox,(x) — prox,(y)) = [[prox,(x) — prox,(y)
(ii) [[prox,(x) — prox,(y)|| < [Ix — -

I2.

Proof.
> Denote u = prox,(x), v = prox,(y).
> x —u € Jh(u),y — v € dh(v).
» By the subgradient inequality

f(v)
f(u)

f(u)+ (x —u,v —u),
f(v)+{y—v,u—v).

(A\VARAYS

v

Summing the above two inequalities, we obtain ((x —u) — (y —v),u—v) > 0.

v

Thus,(u —v,x —y) > |lu—v|?.

v

(ii) follows from Cauchy-Schwarz.
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Moreau Decomposition

Theorem. Let f be a closed, proper and extended real-valued convex func-
tion. Then for any x € E

proxg(x) + proxs.(x) = x.

Proof.
> Let x € E, u = prox,(x).
> x —u € Jf(u)
> iff u € Of*(x — u).
> iff x — u = proxs.(x).
» Thus,

proxs(x) + proxs. (x) = u+ (x — u) = x.

A direct consequence (extended Moreau decomposition)

Proxys(x) + Aproxe. /5 (x/A) = x
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Prox of Support Functions

Let C be a nonempty closed and convex set, and let A > 0. Then

proxy,.(x) = x — APc(x/A).

Proof. By the extended Moreau decomposition formula
Proxyg.(X) = X = Aprox, -1, (x/A) = x = Aprox, -15.(x/A) = x = APc(x/A)

Examples:
> prox, .. (x) =x — )\PB““‘Q,*[()’l](x/)\). (Il - |l - arbitrary norm)
> proxy ). (x) =x— APg | 10,1)(x/A).
> Drox, max(_)(x) =x— APa,(x/A).
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Preliminaries — Smoothness

Definition. Let L > 0. A function f : E — (—o00, 00] is said to be L-smooth
over a set D C int(dom(f)) if it is differentiable over D and satisfies

|[VF(x) = VF(y)|l« < L||x—yl] forall x,y € D.

The constant L is called the smoothness parameter.

We consider here also non-Euclidean norms.

The class of L-smooth functions is denoted by C;**(D).

When D = E, the class is often denoted by CLl’l.

The class of functions which are L-smooth for some L > 0 is denoted by C%!,

vV v v.Y

v

If a function is Li-smooth, then it is also Ly-smooth for any L, > L;.

Examples:
> f(x) =(a,x)+b,acE, beR (0-smooth).
> f(x) = ix"Ax+b"x+c, A€S",beR" and c € R (||A];,4-smooth if R”
is endowed with the /,-norm).

» f(x) = 3d2 (f : E = R) (1-smooth)
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The Descent Lemma

Lemma. Let f : E — (—o0,00] be an L-smooth function (L > 0) over a
given convex set D. Then for any x,y € D,

Fy) < FO) + (VF()y =)+ 5 x— vl

Proof.
» By the fundamental theorem of calculus:
Fy) — F(x) = [H(VF(x+ ty — x)).y — x)dt.
> £(y) — F(x) = (VF(x),y = x) + o (VF(x+ ty — X)) — VF(x),y — x)dt.
> Thus,

IF(y) — F(x) — (VF(x)y —x)| = / (VF(x + t(y —x)) — VF(x),y — x)dt

INE

/0 IVF(x+ ty — %)) — VF)]l- - |y — x| dit

IN

! 2 L 2
tLlly — x|de = S ly — x|,
0
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Characterizations of L-smoothness

Theorem. Let f : E — R be a convex function, differentiable over E, and
let L > 0. Then the following claims are equivalent:

(i) fis L-smooth.

(i) f(y) < f(x)+ (VF(x),y —x) + 5|lx — y||* for all x,y € E.
(i) f(y) > f(x) + (VF(x),y — x) + o || VF(x) — VF(y)||? for all x,y € E.
(iv) (VF(x) = VF(y),x —y) > {[IVF(x) = VF(y)||2 for all x,y € E.

(v) FOx+ (1= A)y) > M(x) + (1= A)F(y) = 3A(L = N)[x — y||* for any

x,y € E and X € [0, 1].

v

Amir Beck Proximal-Based Methods 64 /181



L-Smoothness and Boundedness of the Hessian

Theorem. Let f : R” — R be a twice continuously differentiable function
over R". Then for a given L > 0, the following two claims are equivalent:

(i) fis L-smooth w.r.t. the /, norm (p > 1).
(it) [[V2f(x)[|p,g < L for any x € R", where q satisfies  + 2 = 1.

i

Corollary. Let f : R"” — R be a twice continuously differentiable convex
function over R". Then f is L-smooth w.r.t. the h-norm iff Ay (V2f(x)) <
L for any x € R".

v

Examples

» f(x) =+/1+|x][3 (f: R" = R). 1-smooth w.r.t. to h.

> f(x) =log (e +e2+...+¢e%) (f : R” = R). 1-smooth w.r.t. / and
lso-norms.
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The Proximal Gradient Method (PGM)

The Proximal Gradient Method aims to solve the composite model:
(P) min{F(x) =f(x)+g(x):x € E}

(A) g:E — (—o0, 0] is proper closed and convex.
(B) f:E — (—o0,00] is proper and closed; dom(g) C int(dom(f)) and f
L¢-smooth over int(dom(f)).

(C) The optimal set of problem (P) is nonempty and denoted by X*. The
optimal value of the problem is denoted by Fqp.
Three prototype examples:
> unconstrained smooth minimization (g = 0)

min{f(x) : x € E}

> convex constrained smooth minimization (g = d¢, C # () closed convex)
min{f(x) : x € C}

> / regularized problems (E = R", g(x) = Al|x||1)
min{f(x) + A||x||1 : x € R"}
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The ldea
Instead of minimizing directly

min f(x) + g(x)

x€E

Approximate f by a regularized linear approximation of f while keeping g fixed.

1
xktl — argmin {f(xk) + Vf(xk)T(X — Xk) + ZT”X - XkH2 + g(x)}
X k

x*+1 — argmin {g( )+ Hx — (x* = VA }

Proximal Gradient Method

xkHl = proxtkg(xk — 4 VF(xX))
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Three Prototype Examples Contd.

» Gradient Method ( g = 0, unconstrained minimization)

XK = x* — 1, VF(x¥)

> Gradient Projection Method (g = d¢, constrained convex minimization)

XK = Pe(xk — 1, VF(x¥))

> lterative Soft-Thresholding Algorithm (ISTA) (g = || - |l1):
X = T (x — 5, VF(xF))

where T, (u) = [Ju] — ae] ® sgn(u).
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The Proximal Gradient Method
» We will take the stepsizes as t; = +
The Proximal Gradient Method
Initialization: pick x° € int(dom(f)).
General step: for any k =0,1,2,..

. execute the following steps:
(a) pick Ly > 0.

(b) set xkt1 = ProX Ly (x - —Vf( ))

» The general update step can be written as x*1 = T[k’g(xk)

» T,°¢ :int(dom(f)) — E is the prox-grad operator defined by

T/ % (x) = proxy, (x - in(x)) .

» When the identities of f and g will be clear from the context, we will often
omit the superscripts f, g and write T(-) instead of T[’g(-)
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Sufficient Decrease Lemma

Lemma. Let F=f+gand T, = T[’g. Then for any x € int(dom(f)) and
Le (%,oo)
Lf

FO) — F(Tu00) = ~ 52 [l (@

where G[’g : int(dom(f)) — E is the operator defined by G[’g(x) =
L(x — T.(x)).

v

Proof. We use the shorthand notation x™ = T;(x).
> By the descent Iemma N Ls
F(XT) < £ + (V) x" —x) + o-x
» By the second prox theorem, since x* = Proxi, (x — 1 VF(x)),

1 + + 1 |
_Z _ _ < = _ = .
X LVf(x) X7, X — X < Lg(x) Lg(x )

> Thus, (V£(x),x" = x) < —L|x" —x|* + g(x) — g(x"),
> which combined with (5) yields

F(x) + g(x*) < F(x) + glx) + (L+L")||+ .
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The Gradient Mapping

» Definition. The gradient mapping is the operator G[’g s int(dom(f)) —» E
defined by

GlE(x) =1L (x - T[’g(x))
for any x € int(dom(f)).

» When the identities of f and g will be clear from the context, we will use the
notation G, instead of G[’g.

In the special case where L = Ly, the sufficient decrease lemma amounts to

Corollary. For any x € int(dom(f)):

FO) = F(Tu () 2 57 G (.
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Properties of the Gradient Mapping |
Recall: under properties (A),(B), the stationary points of the problem
(P)  min{F(x) = f(x) + 8(x)}

are the points satisfying —Vf(x) € dg(x). Necessary optimality condition when f
is nonconvex, and necessary and sufficient condition if f is convex.

Theorem Let f and g satisfy properties (A) and (B) and let L > 0. Then

(a) G,_f’go(x) = V£ (x) for any x € int(dom(f)), where go(x) = 0.

(b) For x* € int(dom(f)), G/ #(x*) = 0 iff x* is a stationary point

Proof.
(a) G/ (x) =L (x — Proxig, (x— %Vf(x))) =L(x— (x—1Vf(x))) = VF(x).
(b) G/ &(x*) = 0 iff x* = proxi, (x* — {Vf(x*)). By the second prox theorem

X —ZVf(x) X" e Lag(x )

that is, iff —V£(x*) € dg(x*).
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The Gradient Mapping as an Optimality Measure

Corollary Let f and g satisfy properties (A) and (B) and let L > 0. Suppose

that in addition f is convex. Then for x* € dom(g), G[’g(x*) = 0 if and
only if x* is an optimal solution of problem (P).

> ||GL(x)|| can be regarded as an “optimality measure” in the sense that it is
always nonnegative, and equal to zero if and only if x is a stationary point (or
optimal point if f is convex).
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Properties of the Gradient Mapping Il

> monotonicity w.r.t. the parameter. for any x € int(dom(f)) and
Ly > [, >0,

G = [[GL.(X)I,
G (Xl 16 ()l
Ly Ly

IN

» Lipschitz continuity. ||G,(x) — G.(y)|| < (2L + L¢)||x —y].
If in addition f is convex and Lf-smooth (over the entire space)

> (G (x) = G (y).x = ¥) = 4 161, (x) = Gio ()’

> G (x) = GL W < 5 [x —yll

» Monotonicity w.r.t. the prox-grad mapping: |G, (T, (x))|| < |G, (X)]]-
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Stepsize Strategies

» constant. L, =L € (&, 00) for all k.

» backtracking procedure B1. The procedure requires three
parameters (s,v,n) where s > 0,7 € (0,1) and n > 1. First,
Ly is set to be equal to the initial guess s. Then, while

F(<) = F(TL () < L1606 P,

we set Ly :=nLy. Thatis, Ly is chosen as Ly = snik, where iy
is the smallest nonnegative integer for which the condition

v
F(Xk) - F( Tsnfk (Xk)) Z ST]ik ||Gsnfk (xk)||2

is satisfied.

For the backtracking procedure it holds that L, < max {s7 2(’175;) }
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Sufficient Decrease For Proximal Gradient

Lemma. Let {x*}4>o be the sequence generated by PGM. with either a
constant stepsize defined by L, = L € (%, oo) or with a stepsize chosen by
the backtracking procedure B1. Then

F(x) = F(x"") > M| Ga(x")|%,

where
ik . _
M- @ constant stepsize, [ | constant stepsize,
") —+2X.— backtracking, " | s, backtracking.

max{s,z(?iif,y)}

v

Proof. The result for the constant stepsize setting follows by plugging L = L and
x = x¥ in the sufficient decrease lemma. For the backtracking procedure we have

Yy 2l 2l
FX) = FO) 2 2160, 6917 2 ———— 160, 6P 2 ———— 160,
k max{s,m max{s,m}
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Convergence of PGM - the Nonconvex Case

Theorem. Let {x¥}x>o be the sequence generated by PGM with either a
constant stepsize defined by L, = L € (%, oo) or with a stepsize chosen by
the backtracking procedure B1. Then
(a) The sequence {F(x*)}>o is nonincreasing. In addition,

F(xk*1) < F(x*) if and only if x is not a stationary point of (P).
(b) Gy(x¥) — 0 as k — oo.

. /F(x°)—Fopt
(€) minpor.. .k llGa(x")]| < YEC)Fore

/M(k+1)
(d) All limit points of the sequence {x*}x>¢ are stationary points of
problem (P).
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The Fundamental Prox-Grad Inequality
Theorem. For any x € E and y € int(dom(f)) satisfying

F(Tu(y)) < Fy) + (VF(y), Tuly) = v) + 511 Tely) = yIP%, (6)

it holds that ! L
F(x) = F(Tu(y)) 2 5 llx — Tu(y)lI* - Sllx = ylI> 4+ 4r(xy),  (7)

where l¢(x,y) = f(x) — f(y) — (Vf(y),x —y).

Proof.
> We use the notation y™ = T,(y).
> Since y© = proxy, (y — 1 Vf(y)), by the second prox theorem it follows that

78(x) = %g(ﬁ) + <y - %Vf(y) -y x— y+> :
» Therefore,
gx) = gly")+Ly—-y",x—y") +(VF(y),y" —x)
gy )+ Ly—y ", x—y")
+(VE(y),y" —y) + (VF(y),y — x) (8)
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Proof Contd.

v

By (6), f(y™) < f(y) + (VF(y),y" —y) + 5lly" —y|?
Hence, (VF(y),y" —y) > f(y*) — f(y) — 5lly" —yI%,
which combined with (8) yields

v

v

L
F(x) = F(y") + Ly —y"x—y") = Zlly" - v+ Le(x,y).

v

Using the identity (y —y",x —y*) = 3x =y [+ 3y =y = 3]y — x|,
we obtain that

L L
FO) = Fy") = Slx =y [P = Slx = yl* + fe(x.y),
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Sufficient Decrease Lemma - 2nd Version

Corollary. For any x € int(dom(f)) for which

F(TL(x)) < £(x) + (VF(x), Ti(x) = x) + éll Tu(x) — x|,

it holds that 1
F(x) — F(Tw(x)) = ZIIGL(X)IIZ-
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Stepsize Strategies in the Convex Case
When f is also convex, we will define two possible stepsize strategies for which

Ly

FXL) < F(xF) + (VF(xF), xk T — xK) + 5

||xk+1 _xk||2.

» constant. L, = L; for all k.

» backtracking procedure B2. The procedure requires two parameters (s, 7),
where s > 0 and n > 1. Define L_; = s. At iteration k, Ly is set to be equal
to Lx_1. Then, while

F(TL(X)) > F(x) + (VF(XY), Ti () —x9) + %H 7o, (xF) = x4)1%,

we set Ly :=nLy. Thatis, Ly is chosen as Ly = Lk_m"k, where iy is the
smallest nonnegative integer for which

L
F(Ty e (X)) < FOC) +(VF(XE), Ty, (X) = x5) + f 1Ty, i () = X517

k—1m'k
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Remarks

> BLf < Ly < als, where

B 1, constant, 5= 1, constant,
a = max{ﬁ,i}» backtracking, -

Lif, backtracking.

» Monotonicity of PGM. Invoking the sufficient decrease lemma (2nd
version) with x = x¥, we obtain that

L
F(xk) _ F(xk+1) > 2k ka B Xk+1||2.
or

1
F(¥) = FOH) = 6 (641
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O(1/k) Rate of Convergence of Proximal Gradient

Theorem. Suppose that f is convex. Let {x“},>q be the sequence generated
by the proximal gradient method with either a constant stepsize rule or the
backtracking procedure B2. Then for any x* € X* and k > 0,

aLs||x? — x*||?

F(Xk)_FoptS 2/( )

where a = 1 in the constant stepsize setting and a = max {77, Lif} if the

backtracking rule is employed.

Proof.

» Substituting L = L,, x = x* and y = x" in the fundamental prox-grad ineq.,

v

(RO = Fee))

\Y]

2
" = xR = " = X7 (7, XT)
n

v

Ix* = %2 = flxt = %",
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Proof Contd.

» Summing over n=0,1,..., k — 1 and using the bound L, < alf, we obtain
5 kot
1 ) ) = [ == 1 =<

> Cnlo(FOMY) = Fope) < 92" = X2 = 22 " — xK||2 < 2 [lx* — x>

n=0
By the monotonicity of {F(x")}n>0.

v

>
_

Osz

K(F(x) = Fopt) < ) (F(x™) = Fope) < —~[Ix" —

2

I
<}

n

k ale|x* =x°||?
» Consequently, F(x) — Fope < —H5—"-.
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Fejér Monotonicity

Theorem. Suppose that f is convex. Let {x“},>q be the sequence generated
by the proximal gradient method with either a constant stepsize rule or the
backtracking procedure B2. Then for any x* € X* and k > 0,

I — x| < [lx — %7

Proof.
» Substituting L = Ly, x = x* and y = x¥ in the fundamental prox-grad
inequality (7),

2 el +1
TR = Fe))

Y

2
" = xEEHPZ =l = X[ 4 (7, X)
k

v

e e e

» The result follows by the inequality F(x*) — F(xk*1) < 0.
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Fejér Monotonicity - Definition and Main Result

» Definition. A sequence {x*},>0 C IE is called Fejér monotone w.r.t. a set
SCEIif |x*! —y| < ||x* —y| forall k >0and y € S.

Theorem (convergence of Fejér monotone sequences). Let {x*}x>0 C E
be asequence, and let S be a set satisfying D C S, where D is the set
comprising all the limit points of {x*},>0. If {x*}«>0 is Fejér monotone
w.r.t. S, then it converges to a point in D.

v

Consequence: convergence of the sequence generated by PGM.

Theorem. Suppose that f is convex. Let {x“},>q be the sequence generated
by PGM with either a constant stepsize rule or the backtracking procedure
B2. Then the sequence {x} ;>0 converges to an optimal solution of problem

(P).

v
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Iteration Complexity of Algorithms

> An s-optimal solution of problem (P) is a vector x € dom(g) satisfying
F()_()—Foptgg.

» In complexity analysis, the following question is asked: how many iterations
are required to obtain an e-optimal solution? meaning how many iterations
are required to obtain the condition F(x¥) — F,p < ¢

L 0__ %2
» Recall: F(x¥) — Fop < %

Theorem[O(1/e) complexity of PGM]. For any k satisfying

OéLfR2
k>
=[]

it holds that F(x*) — F,,¢ < &, where R is an upper bound on |x* — x°||
for some x* € X*.

V.
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O(1/k) Rate of Convergence of the Gradient Mapping
Norm in the Convex Case

VF(x®)—Fopt
VM(k+1)

Recall: min,—g 1, «||Ga(x")| <
We can do better if f is convex:

Theorem. Suppose that f is convex. Let {x“} ;>0 be the sequence generated
by PGM with either a constant stepsize by the backtracking procedure B2.
Then for any x* € X* and k > 0,

. 2010 L¢||x0 — x*
min[[Gar, () < 22X X

—0,1, VB(k+1)

where « = [ = 1 in the constant stepsize setting and a =

max {n, Lif} , 8= Lif if the backtracking rule is employed.

v

. .. DY
And even better if a constant stepsize is used: |G, (x¥)|| < %

Amir Beck Proximal-Based Methods 88 / 181



Linear Rate of Convergence of PGM — Strongly Convex
Case
Theorem. Suppose that f is o-strongly convex (o > 0). Let {x*},>¢ be the

sequence generated by the proximal gradient method with either a constant
stepsize rule or backtracking procedure B2. Let

1, constant stepsize,
o= .
max {77, Lif} , backtracking.

Then for any x* € X and k > 0,

(8) Ix = x| < (1 - ;) Ik — x|

k
(b) Ik —x*[2 < (1= %) Ix® = x"|.

E(xkH1y _ F. . < ol 1_Lk+1 0 o2
(c) F(x*™) = Fopt < % ol [Ix° — x*|°.
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Complexity of PGM - the Strongly Convex Case

A direct result of the rate analysis:

Theorem. For any k > 1 satisfying

1 O[LfR2
k > aklog - + ak log > ,

it holds that F(x¥) — Fopy < &, where R is an upper bound on ||x° — x*||
and k= L,

o

v
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Non-Euclidean Spaces

v

Until now we assumed that the underlying space is Euclidean, meaning that
IR ERVACD 2

What is the effect of considering a different norm?

v

v

What is the role of the dual space?
We will concentrate the simplest example: the gradient method.

v
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The Dual Space

A linear functional on a vector space E is a linear transformation from E to R.

v

» The dual space E* is the set of all linear functionals on E.

» Fact: For inner product spaces, for any linear functional f € E*, there exists

vV v.Yyy

v € E such that
f(x) = (v, x).

We will make the association f(-) = (v,-) e E* <> v € E.
Convention: the elements in E* are the same as in E.
The inner product in E* is the same as in E.

Essentially, the only difference is the norm of the dual space:

Iyl = max{{y,x) : [[x[| <1}, yeE"
Alternative representation:
Iyll. = max{(y,x) : x| =1}, yeE".

Subgradients and gradients are always in the dual space.
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Gradient Method Reuvisited

» Consider the unconstrained problem

min{f(x) : x € E},

where we assume that f is Ls-smooth w.r.t. the underlying norm:

IVE(x) = V() < Lellx = y].

» The gradient method has the form

XM = %k — 1, VF(x).

» A*“philosophical” flaw: x* € E while V(x¥) € E*.
» Solution: consider the “primal counterpart” of Vf(x*) € E*.
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The Primal Counterpart

> Definition. For any vector a € E*, the set of primal counterparts of a is

Aa = argmax{(a,v) : ||v|]| < 1}.
vek

Lemma [basic properties of primal counterparts| Let a € E*. Then
(a) If a#0, then |jaf|| =1 for any af € A,.
(b) Ifa=0, then A, = B||.|| [0, 1].
(c) (a,a’) = [[a]|. for any al € A,.
Examples: E =R", a # 0,

=1l A= {2 )

s =1l Ae = { i Msem(ader - S hi = 1y 2 05 € (a) )
where /(a) = argmax |aj|.
i=1,2,...;n
=1 Dl Aa={z €R": zi = sgn(a;), i € Ix(a), |z < 1,) € b(a)},
where

I.(a) ={ie{1,2,...,n}:a; #0}, h(a) = {i € {1,2,...,n} : a; = 0}.
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The Non-Euclidean Gradient Method
The Non-Euclidean Gradient Method

Initialization: pick x° € E arbitrarily.
General step: for any k = 0,1,2,... execute the following steps:
(a) pick VF(x*)T € Ayrey;

(b) set XK1 — xk _ HVf( )H*Vf( )

» Convergence analysis relies on the descent lemma:

F(y) < f(x) + (VF(x),y —x) + 5 x - y|.
> Sufficient Decrease: f(x*) — f(x**1) > 51 ||VF(x")]2.
> Proof of sufficient decrease:

L
f(xk+1) < f(xk) + <vf—(xk)’xk+1 _ Xk> + Ef‘|xk+1 _ xk||2

VA [l IVF(x)]2

» Ol S(VF(xF), VA(xA)T) + 21

— 1) -
= )~ S IVAIE,
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Convergence in the Nonconvex Case

Theorem. Let {x“},>o be the sequence generated by the non-Euclidean
gradient method. Then

(a) the sequence {f(x¥)}x>0 is nonincreasing. In addition,

f(xk1) < £(xK) iff VF(xK) #0;

(b) if the sequence {f(x*)}x>o is bounded below, then V£(x¥) — 0 as
k — oo;

(c) if the optimal value is finite and equal to fyp;, then

0)__
Minno1.. .k ||VF(x")], < Y2V forr

(d) all limit points of the sequence {x*},>¢ are stationary points of f.

Proof. (a),(b) and (d) follow immediately from the sufficient decrease property.
(c) follows by summing the sufficient decrease property

FO) = o 2 () = £ = Y O(F) = £x7™)

n=0

Y

k
1 ny 2 k+1 . ny 2
R >
31, 2 VA6 = = min 976
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Convergence in the Convex Case

Assumptions:
» f:E— Ris Ls-smooth and convex.

» The optimal set is nonempty and denoted by X*. The optimal value is
denoted by fopt.

f(x) < f(x°),x* € X*} <R.

Lemma. f(x¥) — f(x**+1) > ZL:Rz(f(Xk) — fopt)” J

Proof.
> By the gradient inequality,

F(X) ~fope = F(x")=F(x") < (VF(x"),x"—x7) < VA« % x| <RIV

» Combining the above with sufficient decrease property,

fF(xk) — F(xkt1) > %LfHVf(xk)Hi the result follows.
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O(1/k) rate of convergence of the non-Euclidean gradient
method

For any k > 1,
21 R?
f(xk) — fopt < e
k
Proof.

» Define ay = f(x") — Topt

» Then by previous lemma,

2
ak — ak+1 = Eak’

where C = 2L¢R?.
» We can thus deduce (why?) that a, <

(e
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Non-Euclidean Gradient under the /;-Norm

» R” endowed with the /-norm.

» f be an Lg-smooth function w.r.t. the /;-norm.

Non-Euclidean Gradient under the /;-Norm

» Initialization: pick x° € R".

» General step: for any k =0,1,2,... execute the following steps:
f (x¥)
aX,'

xK oo Of (xk
— xt — L9l gy ( 5i,-k )) e

> set iy € argmax
i

i

> xk+1

Coordinate descent-type method
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Example

Consider the problem

1
min {xTAx + bTx} ,
xERN 2

» AcS], and b e R".
> The underlying space is E = R" endowed with the /,-norm (p € [1, o0]).

> fis L%)-smooth with
L) = ||Alp.q = max{[|AX]q : [xI|p < 1}

with g € [1, 0] satisfying & + ¢ = 1.
Two settings:

» p = 2. In this case, since A is positive definite, L(f2) =||A

» p=1. Here Lfrl) = ||A|l1,00 = max;j |Aijl.
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Two

Algorithms

Euclidean (p = 2):

Non-E

Algorithm G2
» Initialization: pick x° € R".
» General step (k > 0): x*1 = xk — ﬁ(Axk +b).

uclidean (p = 1)

Algorithm G1
» Initialization: pick x° € R".
> General step (k > 0):

> pick ik € argmax \A,—xk + bj|, where A; denotes ith row of A.
i=1,2,...,n
K .
X; J# ik
k+1 _ J 7 . L
> update X[ = X;kk . ﬁ(Akak-i-bikL 7=
f

e Algo

rithm G2 requires O(n?) operations per iteration, while algorithm G1

requires only O(n).
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Example Contd.

» Set A = J + 2, where J is the matrix of all-ones.
> A is positive definite and Amax(A) = 2+ n, max; j |A;j| = 3.
> Therefore, as pr = % = "J3r2
(Algorithm G2) should become more inferior to the non-Euclidean version
(Algorithm G1).
Numerical Example:
> b=10e;,x° =e,.
» n=10/100(pr = 4/34)
» We count both iterations and “meta iterations” of G1.

gets larger, the Euclidean gradient method
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n = 100

opt

xy-f
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Fast Proximal Gradient

» A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm
for linear inverse problems, SIAM J. Imaging Sci. (2009).

» A. Beck and M. Teboulle, Gradient-based algorithms with applications to
signal-recovery problems, In Convex optimization in signal processing and
communications (2010)

» Y. Nesterov, Gradient methods for minimizing composite functions, Math.
Program. (2013)
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FISTA (Fast Proximal Gradient Method)

e The model:

(P) min £(x) + g(x)

e Underlying Assumptions:

(A) g:E — (—o00,0] is proper closed and convex.
(B) f:E — R is Lf-smooth and convex.

(C) The optimal set of (P) is nonempty and denoted by X*. The optimal value
of the problem is denoted by Fp¢.

e The Idea: instead of making a step of the form
Xt = prox ., | x* - in(xk)
[t Ly
we will consider a step of the form
k+1 k1 k
X =proxag (¥ - L—ka(y )

where y¥ is a special linear combination of x*, x*~1

Amir Beck Proximal-Based Methods

106 / 181



FISTA

FISTA

Input: (f, g,x%), where f and g satisfy properties (A) and (B) and x° € E.
Initialization: set y = x° and t; = 1.

General step: for any k =0,1,2,... execute the following steps:

(a) pick Ly > 0.

(b) set xkt1 = ProX g ( k— L%Vf(yk)).
/ 2
(C) set tpy1 = w

2
(d) compute yk*1 = xk+1 4 (tk—*l) (xk+1 — xk).

7351

» The dominant computational steps of the proximal gradient and FISTA

methods are the same: one proximal computation and one gradient
evaluation.
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Stepsize Rules

» constant. L, = Lf for all k.

» backtracking procedure B3. The procedure requires two parameters
(s,n), where s > 0 and n > 1. Define L_; = s. At iteration k, Ly is
set to be equal to Lx_1. Then, while

AT M) > 0 + (VA6 Telv) =4 + T ) v

we set Ly := nLg. In other words, the stepsize is chosen as
Ly = Lxk_1n'*, where iy is the smallest nonnegative integer for which

AT i (V) < FO9) (VA To i (9) = ¥9) +

Ly
Ty (6~ ¥

In both stepsize rules,

AT M) < FOM) + (V7). Ty 4 + 21T — v IR
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Remarks
> /BLf’ < Lk < OéLf, where

1, constant, 1,
“7 ) max {17, Lif}, backtracking, = { Lif,

» Easy to show by induction that t, > 2 for all k > 0.
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O(1/k?) rate of convergence of FISTA

Theorem. Let {x¥},>0 be the sequence generated by FISTA with either
a constant stepsize rule or the backtracking procedure B3. Then for any
x*€ X*and k> 1,

2aL¢||x° — x*||2
F(x*) — Fopt < BRCESV

where a = 1 in the constant stepsize setting and @ = max {n, Lif} if the

backtracking rule is employed.

Proof heavily based on the fundamental proximal gradient inequality.

Amir Beck Proximal-Based Methods 110 / 181



Alternative Choice for tj

» For the proof of the O(1/k?) rate, it is enough to require that {tx}x>0 will
satisfy
(a) > 552
(b) t7,y — trs1 < t7.

» The choice t, = %12 also satisfies these two properties. (a) is obvious. (b)

holds since
) k+3 k+1 k>+4k+3
tpr —tett = bt —1) = —— - —— = 2
K2 +a4k+4 (k+2)?
= 4 = Tk
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ISTA/FISTA

Consider the model
min f(x) + A||x||1,
xER?

> A>0
» f:R" — R convex and L¢-smooth.
Iterative Shrinkage/Thresholding Algorithm (ISTA):

1
Xk+1 = 7—)\/Lf (Xk — Lfo(Xk)) .

Fast Iterative Shrinkage/Thresholding Algorithm (ISTA):

(a) X1 =T (v = LV,

14+4/14-4t2
(b) tk+1 - f‘(

(C) yk—»—l _ Xk+1 + (L—l) (xk+1 _ xk)_

tht1
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l-Regularized Least Squares
Consider the problem

1 )
min > [|Ax = bl[3 + Allx]|1,

> AcR™" beR™and A > 0.
» Fits (P) with f(x) = 1[[Ax — b||3 and g(x) = Al|x|1.
» fis Li-smooth with Lr = ||[ATA|22 = Amax(ATA).

Amir Beck

. yk+1 k 1 T k
ISTA: X = T, (x — LAT(Ax fb)).

FISTA:
(a) X1 =T (yk — LAT(Ay* - b)).
2

(b) teyr = w_

() y 1l = xk+1 4 (L—l) (xk 1 — xK),

tiy1

Proximal-Based Methods
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Numerical Example |

v

test on regularized /-regularized least squares.
A=1.

> A c RY00x10 The components of A were independently generated using a
standard normal distribution.

v

» the “true” vector is Xirye = €3 — €7.
> b = Axtrue-
» ran 200 iterations of ISTA and FISTA with x° = e.
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Function Values
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Solutions
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Example 2: Wavelet-Based Image Deblurring

1
min > [[Ax — b|? + Aljx|1

> image of size 512x512

> matrix A is dense (Gaussian blurring times inverse of two-stage Haar wavelet
transform).

> all problems solved with fixed A and Gaussian noise.
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Deblurring of the Cameraman

original blurred and noisy
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1000 Iterations of ISTA versus 200 of FISTA

ISTA: 1000 Iterations FISTA: 200 Iterations
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Original Versus Deblurring via FISTA

Original FISTA:1000 lterations
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Function Values errors F(x*) — F(x*)

L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Weighted FISTA

» E=R"
> The underlying assumption is that E is Euclidean.
» Assume that the endowed inner product is the Q-inner product

(x,y) =x"Qy,

where Q € S7 .
» VF(x) = Q 1Ds(x), where

Df(X) =
» L9 (Lipschitz constant of f w.r.t. the Q-norm):
1Q ' Dr(x) = Q" Dr(y)lla < LR|x — yllq for any x,y € R".
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Weighted FISTA

The general update rule for FISTA in this case will have the form
(a) xk+1 — proxég ( k %{QilDf(yk)>.

(b) tipy = V% Vita

2
() yk+! — xk+l 4 (L—l) (XK — xk),

tht1

The prox operator in step (a) is computed in terms of the Q-norm:

1
prox,(x) = argmin {h(u) + —|ju-— x||é} .
ucRn 2

The convergence result will also be written in term of the Q-norm
2aL9|x0 — x*||2
F(xk) _ Fopt < f || HQ

- (k+1)2
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Restarting FISTA in the Strongly Convex Case

» Assume that f is o-strongly convex for some o > 0.

> The proximal gradient method attains an e-optimal solution after an order of
O(k log(1)) iterations (x = %)

» A natural question is how the complexity result improves when using FISTA.

» Done by incorporating a restarting mechanism to FISTA — improves
complexity result to O(y/x log(1))

Restarted FISTA
Initialization: pick z~! € E and a positive integer N. Set z2° = T;,(z1).
General step (k > 0)

» run N iterations of FISTA with constant stepsize (Lx = L¢) and input
(f,g,2*) and obtain a sequence {x"}_;

k1 _ N

> set z
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Restarted FISTA

Theorem [O(y/k log(L)) complexity of restarted FISTA] Suppose that that
f is o-strongly convex (o > 0). Let {z¥}4>0 be the sequence generated by
the restarted FISTA method employed with N = [v/8x — 1]. Let R be an
upper bound on [|z71 — x*||. Then

() F(2) = Fopr < 15 (3)";

(b) after k iterations of FISTA with k satisfying

k> Var <Iog( ) Iog(LfR2)> ,

1
B
(2)  log(2)
an g-optimal solution is obtained at the end of last completed cycle:

Fzlil) - Fo <e.
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Smoothing

> A. Beck and M. Teboulle, Smoothing and first order methods: a unified
framework. SIAM J. Optim. (2012)

» Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program.
(2005)
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Smoothing

» |t is known that in general smooth convex optimization problems can be
solved with complexity O(1/?)

> FISTA requires O(1/+/¢) to obtain an e-optimal solution of the composite
model f + g .

» We will show how FISTA can be used to devise a method for more general
nonsmooth convex problems in an improved complexity of O(1/¢).

The model under consideration is

(P) min{f(x)+ h(x) +g(x) : x € E}.

» f L¢-smooth and convex;
» g proper closed and convex and “proximable”;

> h real-valued and convex (but not “proximable”)
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The Idea

(P) min{f(x) 4+ h(x) + g(x) : x € E}.

> Solving (P) with FISTA with smooth/nosmooth parts (f, g + h) is not
practical.

» The idea will be to find a smooth approximation of h, say h and solve the
problem via FISTA with smooth and nonsmooth parts taken as (f + h, g).

> This simple idea will be the basis for the improved O(1/¢) complexity.

» Need to study in more details the notions of smooth approximations and
smoothability.
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Smooth Approximations and Smoothability

» Definition. A convex function h:E — R is called («, 3)-smoothable
(o, B > 0) if for any p > 0 there exists a convex differentiable function
h, : E — R such that

(@) hu(x) < h(x) < hyu(x) + B for all x € E.
(b) hy is $-smooth.

» The function h,, is called a L _smooth approximation of h with parameters

N H_
(a, B).
Examples:

» h(x) = ||x||2(E = R"). For any >0, h,(x)=+/|x||3+p2—pisa

i—smooth approximation of h with parameters (1,1) = h is
(1,1)-smoothable.

> h(x) = max{x1, x2,..., %, }(E =R"). For any p > 0,
h.u(x) = plog (37, e/#) — plog n is a smooth approximation of h with
parameters (1,log n) = h is (1, log n)-smoothable.
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Calculus of Smooth Approximations

Theorem.

(a) Let h',h? : E — R be convex functions and let 1,72 be nonnegative

1

numbers. Suppose that for a given p > 0, hL is a ﬁ—smooth

approximation of h’ with parameters («;, 3;) for i = 1,2, then
'nhlll + ’)/th is a %—smooth approximation of vy At + 'yth with
parameters (11 + Y22, 7181 + 7252)-

Let A:E — V be a linear transformation between the Euclidean
spaces [E and V. Let h: V — R be a convex function and define

q(x) = h(A(x) + b),

where b € V. Suppose that for a given u >0, h, is a %—smooth

approximation of h with parameters («, 8). Then the function

qu(x) = h,(A(x) +b) is a ﬁ-smooth approximation of g with

parameters (a||.Al2, 3).

Proof: very easy...
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Operations Preserving Smoothability

Corollary.

(a) Let h', h?: E — R be convex functions which are (ay, 31)- and
(a2, B2)-smoothable respectively, and let 71,72 be nonnegative
numbers. Then v h! + y»h% is a
(7101 + Y2002, 7151 + Y282)-smoothable function.

(b) Let A:E — V be a linear transformation between the Euclidean
spaces E and V. Let h: V — R be a convex (a, 3)-smoothable
function and define

q(x) = g(A(x) + b),
where b € V. Then q is an (a|.A||?, 3)-smoothable function.
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Smooth Approximation of Piecewise Affine Functions

» Let g(x) = max {a/x+ b;}, where a; € R” and b; € R for any

i=1,....om
i=1,2,....m
> g(x) = g(Ax + b), where g(y) = max{y1,¥2,...,¥m}, A is the matrix whose
rows are a ,aJ,...,al and b= (by, by,...,by)".

> Let > 0. gu(y) = plog (37, €/#) — plogmis a %—smooth
approximation of g with parameters (1, log m).

» Therefore,

Gu(x) = gu(Ax +b) = jilog (Zfil e(a"T"“”')/“) — jtlog m

is a %—smooth approximation of g with parameters (||Al]3 ,, log m).
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The Moreau Envelope

Definition. Given a proper closed convex function f : E — (—o0, oc], and
u > 0, the Moreau envelope of f is the function

. 1
MY = i { ) + 5~ P}

» The parameter p is called the smoothing parameter.

> By the first prox theorem the minimization problem defining the Moreau
envelope has a unique solution, given by prox,,¢(x). Therefore,

1
My (x) = f(prox,,;(x)) + 21X~ prox,,(x)[%.
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Examples
» Indicators. Suppose that f = §¢, where C C E is a nonempty closed and
convex set. Then prox; = P¢ and

ME(x) = Sc(Pe(x)) + inx — PP

Therefore,
5C = dc

» Euclidean Norms f(x) = ||x||. Then for any > 0 and x € E,

prox,,¢(x) = (1 N W) g

Therefore,
> HXII2 [Ix[| < g,

1
MH(x) = [|prox,+(X) || + = ||x — prox,+(X)||* = {
f( ) /,Lf( )H 2/‘ uf( )H ||X|| 7 ”XH > U,

HM/ (X)

H,, - Huber function
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Huber Function

H,, gets smoother as y increases.

-1 i
-5 0 5
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Smoothability of the Moreau Envelope

Theorem. Let f : E — ( 00, 00] be a proper closed and convex function.
Let > 0. Then M} is —-smooth over E and

VMY (x) = = (x — prox,¢(x)) .

==

Examples:
> (smoothability of the squared distance) Let C C [E be a nonempty closed
and convex set. Recall that 3d% = Mj_. Then 3d2 is 1-smooth and

V (1/2dZ) (x) = x — prox,_(x) = x — Pc(x).

» (smoothability of Huber) H, = M}, where f(x) = |x||. Then H, is
&--smooth and

1 1 I
VH,(x) = — (x—prox,((x :<x—<1—>x>
w0 = e pronbd) = 4 ma{ Il 1}
R
mae x> m,
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Smoothability of Lipschitz Convex Functions

Theorem. Let h: E — R be a convex function satisfying
|h(x) = h(y)| < £alx —y| for all x,y € E.

2
Then >0 M} isa %—smooth approximation of h with parameters (1, %)

Corollary. Let h: E — R be convex and Lipschitz with constant £,. Then
2
his (1, %”)—smoothable.

Examples:
> (smooth approximation of the L-norm) Let h(x) = ||x||> (over R"). Then
h is convex and Lipschitz with constant £, = 1. Therefore,

Lixla, Il <
M) = Hu(x) = { 2l il <
Iz~ &, xll2 > 4.

is a i—smooth approximation of h with parameters (1, %)

> (smooth approximation of the /;-norm) Let h(x) = ||x||; Then h is convex
and Lipschitz with constant ¢, = \/n. Hence, M}'(x) = >""_; H,(x;) is a
i—smooth approximation of h with parameters (1, 7).
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Smooth Approximations of the Absolute Value Function

Three possible smooth approximations of h(x) = |x|
1(y) — _
> h(x) =X+ p? = (o, 8) = (L1).

2 _ X —X —
> 7 (x) = plog(e/# + e /) — plog 2, (, B) = (1,l0g 2).

> 13(x) = Hu(x), (a, 8) = (1,3).

Huber
— = logexp

N - — — squared-based

08t
06
04t A

02t
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Back to Algorithms - Model and Assumptions

Main model:

(P) min{H(x) = f(x) + h(x) + g(x)}

(A) f:E — Ris Lg-smooth (Lf > 0).
(B) h:E— Ris (o, )-smoothable (e, 5 > 0). For any pz > 0, h, denotes a

1_smooth approximation of h with parameters (o, 3).

"
(C) g:E — (—o00,00] is proper closed and convex.
(D) H has bounded level sets. Specifically, for any § > 0, there exists Rs > 0
such that
Ix|| < Rs for any x satisfying H(x) < 4.

(E) The optimal set of (P) is nonempty and denoted by X*. The optimal value
of the problem is denoted by Hypt.
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The S-FISTA Method
> The idea is to consider the following smoothed version of (P):
(Pu) - min{H,.(x) = f(x) + hu(x) +&(x)},
X N——
Fu(x)

for some p > 0, and solve it using FISTA with constant stepsize.
> A Lipschitz constant of VF,, is L¢ + %; the stepsize is taken as Lf%
W

S-FISTA
Input: x° € dom(g), 1 > 0.
Initialization: set y® = x°, ty = 1; construct h, — a %-smooth approxima-

tion of h with parameters (a, 3); set F, = f + hy,, [=1Ls+ %
General step: for any k =0,1,2,... execute the following steps:

(a) X1 = proxy, (v* = 2VF.(49));

1+4++/1+482
(b) teyr = —5—*
(C) yk+1 = xk+1 (%) (xk+1 _ xk)'
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O(1/e) complexity of S-FISTA

Theorem. Let ¢ € (0,Z) for some fixed Z. Let {x*}4>o be the sequence
generated by S-FISTA with smoothing parameter

(01 g
"= \/%mﬂﬁmm

Then for any k satisfying

1 1
> —_
k > 2\/204BF€ + \/2Lfr\/g,

where I = (Ry0)4 5 + [[x°])%, it holds that H(x*) — Hopy < e.
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Minimization of “Proximable” Functions

Consider the problem
(P1) miIrE1{h(x) :x € C},
xXe

v

C is a nonempty closed and convex set.

v

h:E — R is convex function Lipschitz with constant #j,.

v

Fits model (P) with f =0 and g = dc.

h, = M} is a i—smooth approximation of h with parameters («, 8) = (1, %i)
VM;:(X) - i(x - pI‘OXHh(X)).

After employing O(1/¢) iterations of the the S-FISTA method with

v

v

v

@ € o € € €
H= \/;«/aﬁ+\/aB+Lfs B \/;\/aﬁ+\/a[3 T28
an e-optimal solution will be achieved.

The stepsize is %, where [ = 2 = 1.
L Iz Iz

v
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S-FISTA for Solving (P1)

> The general step of the S-FISTA method is

k+1

X TOX - =
proxi (y 7

Pc(prox,,,(y¥)).

Lor) = pe (o

_ 1
-1

0 = prox(s'))

S-FISTA for solving (P;)

Initialization: set y° = x° € C, to =1;set u=

General step: for any k =0,1,2,... execute
(a) x*** = Pc(prox,,(y"));

14+4/144t2
(b) tiy =~k

t—1
tht1

(@ ¥ =1 ¢ (20) (1)

2 and [ =
the following steps
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Block Proximal Gradient Methods

v

A. Beck and L. Tetruashvili. On the convergence of block coordinate descent
type methods, SIAM J. Optim. (2013)

» M. Hong, X. Wang, M. Razaviyayn, and Z. Q Luo, lteration complexity
analysis of block coordinate descent methods, Arxiv.

» Q. Lin, Z. Lu, and L. Xiao, An accelerated randomized proximal coordinate
gradient method and its application to regularized empirical risk
minimization, SIAM J. Optim., (2015)

» R. Shefi and M. Teboulle, On the rate of convergence of the proximal
alternating linearized minimization algorithm for convex problems, EURO J.
Comput. Optim. (2016)
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Block Proximal Gradient Methods
The Model

(P)

P
x16]E1,x2'€mIE§S...,xp€Ep F(X17X2,. ”’Xp) - f(XI’X27” .7XP) +z;g:l(xj) ’
=

Setting and Notation

> Eq,E,,...,E, are Euclidean spaces.

> E=E; xEy x--- x E,. We use the notation that a vector x € [E can be

written as x = (X1,X2,...,Xp).
» The product space is also Euclidean with endowed norm

[(uz,uz, . up)lls = /320 [luil3,-

» g E — (—00,00] is defined by g(x1,x2,...,%,) = > 7, gi(x;). (P) can thus
be simply written as minyeg (x) + g(x)
> The gradient w.r.t. the ith block (i € {1,2,...,p}) is denoted by V;f
Vf(x) = (Vif(x), Vof(x),..., Vpf(x)).
» Forany i€ {1,2,...,p} we define ; : E; — E to be the linear
transformation given by U;(d) = (0,...,0, d ,0,...,0), deE,.
itMCk
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Underlying Assumption

(A) gi: E; — (—o00,00] is proper closed and convex for any i € {1,2,...,p}.
(B) f:E — Ris L¢-smooth and convex.
(C) There exist Ly, Ly, ..., L, > 0 such that for any i € {1,2,..., p} it holds that

IVif(x) = Vif (x + Ui(d))|| < Li|d]]

forall x € E and d € E;.

(D) The optimal set of problem (P) is nonempty and denoted by X*. The
optimal value is denoted by Fpy.
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The Block Proximal Gradient Method

The Block Proximal Gradient Method

Initialization. pick x° = (x9, xg,..., x9) € int(dom(f)).
General step: for any k =0,1,2,... execute the following steps:

(a) pick ik €{1,2,...,p}

J - o
le'(a J#Ik-

Index selection strategies:
» cyclic. ix = (k mod p) + 1.
Cyclic Block Proximal Gradient (CBPG)

» randomized. iy is randomly picked from {1,2, ..., p} by a uniform
distribution.

Randomized Block Proximal Gradient (RBPG)
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O(1/k) Rate of CBPG

Theorem. Suppose that Assumptions (A-D) hold as well as
(E) For any a > 0, there exists R, > 0 such that

max {||x — x*|| : F(x) < a,x* € X*} < R,.
x,x*€E

Let {x*}x>0 be the sequence generated by the CBPG method. For any
k> 2:

(k-1)/2 2R?
1 8p(Lf a4 LmaX) R
F(ka) _ Fopt < max { <2> (F(XO) - Fopt)a Lmin(k — 1) } ’

where Lmin = minizl,g’..‘,p L,', Lmax = maX,':Lz’m,p L,' and R = RF(xO)-
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O(1/k) Rate of RBPG

Theorem. Suppose that Assumption (A)-(D) hold. Let {x“},>o be the
sequence generated by the RBPG method. Let x* € X*. Then for any
k >0,

p 1 .
B (FO) s < 2 (F1h0 =+ FO) = Fu ).

Here

vl =

p
> Liflvil?
i=1
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v

Dual-Based Proximal Gradient
Methods

A. Beck and M. Teboulle, A fast dual proximal gradient algorithm for convex
minimization and applications, Oper. Res. Lett. (2014)

A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained
total variation image denoising and deblurring problems, IEEE Trans. Image
Process. (2009)

A. Beck, L. Tetruashvili, Y. Vaisbourd, and A. Shemtov, Rate of convergence
analysis of dual-based variables decomposition methods for strongly convex
problems, (2016)

A. Chambolle, An algorithm for total variation minimization and applications,
J. Math. Imaging Vision (2004)

P. Tseng, Applications of a splitting algorithm to decomposition in convex
programming and variational inequalities. SIAM J. Control Optim., (1991)
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The Main Model

Main Model:
(P) fope = min {f(x) + g(A(x))},

Underlying Assumptions:

(A) f:E — (—o0,+0o0] is proper closed and o-strongly convex (o > 0).
(B) g:V — (—o0,+00] is proper closed and convex.

(C) A:E — Vs a linear transformation.
(D)

D) there exists X € ri(dom(f)) and 2 € ri(dom(g)) such that A(X) = z.

Existence and uniqueness of optimal solution: under the above assump-
tions, the objective function is proper closed and strongly convex, and hence
there exists a unique optimal solution, which will be denoted by x*.
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Example 1: Orthogonal Projection onto a Polyhedral set

> Let
S={xeR": Ax < b},

where A € RPX" b € RP. Assume that S # 0.
> Let d € R". The orthogonal projection of d onto S is the unique optimal

solution of
min {||x —d|?: Ax < b}
x€R

> Fits model (P) with E = R", V = RP, f(x) = 1|x — d|]?,

0, z<hb,
oo, else.

£(2) = on( e (2) = {

and A(x) = Ax.

» o0=1
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Example 2: One-Dimensional Total Variation Denoising

» Denoising problem:

1 )
min > 1x — d|P + R(A(X)).

» d € E - noisy and known signal
» A:E — V - linear transformation.
» R:V — R, - regularizing function measuring the magnitude of its argument.

» One-dimensional total variation denoising problem,
E=R"V=R"1 A(x) = Dx, R(z) = \||z||s(\ > 0), D defined by
Dx = (X1 — X2, X0 — X3, .+, Xp_1 — Xn) |

1 ,
(P)  min { 31~ dlB + APl .

» More explicitly: minyeg {%Hx —d3 A - x,-+1\} .
> The function x — ||Dx||; is a one-dimensional total variation function.
» Fits model (P) with

E=R"V=R"!f(x)=3|x—d|?(c =1),g(y) = Ally

1, A(x) = Dx
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The Dual Problem
> (P) is the same as miny ,{f(x) + g(z) : A(x) —z = 0}
» Lagrangian:
L(x,z;y) = f(x) + g(2z) = (¥, A(x) — 2) = f(x) + g(2) — (AT (y). x) + (y,2).
» Minimizing the Lagrangian w.r.t. x and z, we obtain the dual problem

(D) Gopt = max{aly) = —F*(AT(y) = &"(-y)}-

Theorem [strong duality of the pair (P),(D)] fopt = Gopt and the dual prob-
lem (D) attains an optimal solution. J

The dual problem in minimization form:

(D) min{F(y) + G(y)}

Fly) = f(A"(y)),
Gly) = g (~y)
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Rockafellar-Wets Theorem

Theorem [Rockafellar-Wets| Let o > 0. Then

(@) Iff:E—>Risa %—smooth convex function, then f* is o-strongly
convex.

(b) If f:E — (—o00,00] is a proper closed o-strongly convex function,
then f* :E - R is %—smooth.
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The Dual Problem

(D) min{F(¥)+ 6(y)}

Properties of F and G:
AN

Pt

(a) F:V =R is convex and Lg-smooth with Lp =

(b) G:V — (—o0,00] is proper closed and convex.
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Dual Proximal Gradient
Dual Proximal Gradient = Proximal Gradient on (D’)

Dual Proximal Gradient — dual representation
2
> Initialization: pick y° € V and L > L = IAIC,

> General step (k > 0):

1
yt = ProXig (yk - LVF(yk)) :

Theorem [rate of convergence of the dual objective function] Let {y*}x>0

be the sequence generated by the DPG method with L > L = @. Then
for any dual optimal solution y* k > 1,

Llly® —y*|*

k
— <
Gopt — q(y"*) < ok

v
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Constructing a Primal Representation—Technical Lemma

Lemma. Let F(y) = f*(AT(y) + b), G(y) = g*(—y), where f,g and A
satisfy properties (A),(B) and (C) and b € E. Then for any y,v € V and
L > 0 the relation

1
Yy = proxig (v = ZVF(V)) (9)
holds if and only if
1 . 1 -
y=v-— ZA(X) + ZprOXLg(A(X) — Lv),

where
% = argmax { (x, AT (v) + b) — f(x)}.
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Dual Proximal Gradient - Primal Representation

The Dual Proximal Gradient (DPG) Method — primal representation
2

Initialization: pick y° € V, and L > 14,

General step: for any k =0,1,2,... execute the following steps:

(a) set xk = argmax {(x, AT(y¥)) — f(x)};

(b) set ykt = yk — 1 A(x¥) + %prong(.A(xk) — Ly").

v

» The sequence {x“},>o generated by the method will be called “the primal
sequence”, although its elements are not necessarily feasible.
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The Primal-Dual Relation

Obtaining a rate of the primal sequence is done using the following result.

Lemma [primal-dual relation| Let y € dom(G), and let
x = argmax { (x, AT(¥)) — f(x)} .
x€E

Then

1% = x*[1? < = (qopt — q(¥)).

SHLS
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O(1/k) Rate of the Primal Sequence Generated by DPG

Theorem. Let {x*}x>0 and {y*}x>0 be the primal and dual sequences
generated by the DPG method with L > Lg. Then for any optimal dual
solution y* and k > 1,

0 _ y*|[|2
k_x*||2 S L”y y ” )

I .

Proof. )
P 2 2 Llly® —y*|

||X - X*HQ (qopt - q(y )) - 2k

Q
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Fast Dual Proximal Gradient (FDPG)
Fast Dual Proximal Gradient = FISTA on (D’)

Fast Dual Proximal Gradient (FDPG) - dual representation

» Initialization: L > Lp — “A”

> General Step (k > 0):
(a) y = prox1c (wk — 1VF(w"));
(b) tig1 = Lhy/Iat

2 '

() wht = gkl (ﬁ) (yk+1 _ yk).

tey1

W=yl cE, t; =1

Theorem [rate of convergence of the dual objective function] Let {y*}x>0

be the sequence generated by the FDPG method with L > Lp = w.
Then for any dual optimal solution y* of and k > 1,

2L]y° —y*|>

k
= <
qopt q(y ) — (k-|- 1)2

4
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Fast Dual Proximal Gradient - Primal Representation

The Fast Dual Proximal Gradient (FDPG) Method - primal repre-

sentation

PN _ AR 0 0 _
Initialization: L > Lp =", w" =y €V, = 1.
General step (k > 0):

(a) uk = argmax{(u,AT(wk» — f(u)}.

(b) Y1 = wk — ZA(u¥) + prox g (A(u*) — Lwk)
() tis = P
(d) wk k+1 + (%) (yk+1 _yk)_

Amir Beck Proximal-Based Methods

163 / 181



O(1/k?) Rate of the Primal Sequence Generated by FDPG

Theorem Let {x*};>0 and {y¥}x>0 be the primal and dual sequences gen-

erated by the FDPG method with L > L = w. Then for any optimal
dual solution y* and k > 1,

0 _ y*|2
k_x*||2 < 4L||y y ”

Ix = okt 1)

Proof.
2

k _ y*|I2 < £ .
=l < 3 (k+ 1)

2 2L y0 —y* 2
(Gopt — a(y¥)) < - 2Ly” —y "
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Example 1: Orthogonal Projection onto a Polyhedral set

(1 ,
—||x = : < .
(P min {31x—al? Ax < b}

> Fits model (P) with E = R",V = RP, f(x) = 1[x — d||2,
0, z<b,
0) = @ = { & 55
and A(x) = Ax.
» o=1
> argmax{(v,x) — f(x)} = v +d for any v € R";
> Al = [IAll2,2;

v

AT(y) = ATy for any y € R?;

prox,_g(z) = PBOX[_OOQb](z) = min{z, b}.

v
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DPG and FDPG for solving (P;)

Algorithm 1 [DPG for solving (P1)]
> Initialization: L > [|A[]3,,y% € RP.
» General Step (k > 0):
(a) x*=ATy" 4 d;
(b) ¥y =y* — LAx* + L min{Ax* — Ly*,b}.

Algorithm 2 [FDPG for solving (P1)]
> Initialization: L > ||A]j3,,w® =y® € RP, 1) = 1.
> General Step (k > 0):
(a) u* =ATw" 4 d;
(b) y* =w* — LAu* + 1 min{Au* — Lw*,b};
(0) tips = LVIHHE,
(d) wht =yt 4 (L—l) (y< — y).

tey1
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Example 1%: Orthogonal Projection onto the Intersection
of Closed Convex Sets

(1
(P2) min {2||x— d|?>:xe m{?_lc,}.

G, G, ..., C, CE closed and convex.
dcE.
Assume that N?_, C; # () and that projecting onto each set C; is an easy task.
(P,) fits model (P) with
V =EP, f(x) = 3|lx — d|, g(x1, %2, ..., xp) = >, 6c,(x;) and
A E -V A(z) = (z,2,...,2)
———

vVvyVvVvyy

p times
> argmax{(v,x) — f(x)} = v +d for any v € E;
> (LA = p;
> o =1;
» AT(y) =", yi for any y € E?;
> prox; . (vi,ve,...,Vp) = (P (v1), Pc,(v2), ., Pc,(vp)) for any v € EP.
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DPG and FDPG for Solving (P)

Algorithm 3 [DPG for solving (P2)]
» Initialization: L > p,y° € EP.
> General Step (k > 0):

(2) Xk Tl v, + K K K
(b) yktt =yk— 1x +1Pci(x —Lyf), i=1,2,...,p.

Algorithm 4 [FDPG for solving (P2)]
» Initialization: L > p,w® =y® € EP tg = 1.
> General Step (k > 0):

(a) vk = L wh +d
(b) y,k“_w Tuk + 1Pc (uf — Lwy),
i=1,2,...
2
(0) tk+1:l+7\/21+4tk;
(d) whl =yt 4 (?7:11) (y“ — y).
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Orthogonal Projection onto a Polyhedral Set Revisited

» Algorithm 4 can also be used to find an orthogonal projection of a point
d € R” onto the polyhedral set C = {x € R" : Ax < b}, where
A € RPX" b € RP.

» C can be written as C = N?_; G, where C; = {x € R": a/x < b;} with

af,aJ,...,a] being the rows of A.
T
Tx—b;
> PC,.(X) =X—- [a; x ]*a,-.

llai [

Algorithm 5 [FDPG for solving (P1)]
» Initialization: L > p,w® =y® € EP t; = 1.
> General Step (k > 0):
(a) ' =327 wi+d;
(b) ¥y =~ lal (v — Lwf) = blia, i=1,2,...,p;

(C) tt1 = 2
(d) whl = yk+t 4 (L—l) (< — y).

tey1
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Comparison Between DPG and FDPG — Numerical

Example
» Consider the problem of projecting the point (0.5,1.9)7 onto a dodecagon -
a regular polygon with 12 edges represented as the intersection of 12
half-spaces.
> The first 10 iterations of the DPG (Algorithm 3) and FDPG (Algorithm 4/5)
methods with L = p = 12 can be seen below.
DPG FDPG

0°<><>,

.

3

o
g
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Example 2: One-Dimensional Total Variation Denoising

. 1
() min { 31~ a3 + XDl }.

v

Fits model (P) with
E=R"V=R"1f(x)=3x—d|*(c =1),g(y) = Ally|
argmax{(v,x) — f(x)} = v +d for any v € E;

1, A(x) = Dx

v

4> = ID[3, < 4

oc=1;

AT(y) =DTy for any y € R"1;
prox;g(y) = Tac(y)-

vV vV.vYvY
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Example 3 Contd.

Algorithm 6 [DPG for solving (P3)]
» Initialization: y° ¢ R"1,
» General Step (k > 0):
(a) x*=DTy* +d;
(b) yk+1 _ yk o %ka + %’77;,\(ka _ 4yk).

Algorithm 7 [FDPG for solving (Ps)]
» Initialization: w® = y® ¢ R"! t; = 1.
> General Step (k > 0):
(a) u = Dka +d;

(b) y wk — %Duk+%71,\(Duk—4wk);
2

(€) tis1= 1*7\/2“4%;

(d) w Wi = gkt (?7:11) (yk+1 _ yk).
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Numerical Example

» n = 1000

» d is a noisy measurement of a step function.

True Noisy
3. T T T T T T T T T 35 T T T T T T T T T
3r B 3 4
25r - 25 4
2F 2
151 1 15 4
1 - 4
05 q 05 q
or B 0 4
o 0 100 200 300 400 500 600 700 800 900 1000 o 50 100 200 300 400 500 600 700 800 900 1000
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Numerical Example Contd.
» 100 iterations of Algorithms 6 (DPG) and 7 (FDPG) initialized with y° = 0.

DPG FDPG
3. T T T T T T 35 T T T T T T
o " 1 s E—
25r 25
2 [ 2 —
15 15
1 mJ 1 e —
05 05
o A 1 0 —_—
° o 100 200 300 400 500 600 700 800 900 1000 o 50 100 200 300 400 500 600 700 800 900 1000

» Objective function values of the DPG and FDPG methods after 100 iterations
are 9.1667 and 8.4621 respectively; the optimal value is 8.3031.

Amir Beck Proximal-Based Methods 174 / 181



The Dual Block Proximal Gradient Method

The Model
Q) min {f(x) + 2180}
Underlying Assumptions.
(A) f:E — (—o0,+0o0] is proper closed and o-strongly convex (o > 0).
(B) gi : E — (—o0, +00] is proper closed and convex for any i € {1,2,...,p}.
(C) ri(dom(£)) N (NP, ri(dom(g;))) # 0.
Problem (Q) fits model (P) with
V =EP, g(x1,%2,...,%,) = > b, 8i(xi), A(z) = (z,2,...,2).

—
p times

> A2 = p;

» AT(y) =", yi for any y € E?;

> prox;g(vi,va, ..., Vp) = (Proxg (vi), prox,g, (v2), . .., prox,, (vp))
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FDPG for Solving (Q)

Algorithm 9 [FDPG for solving (Q)]
» Initialization: w® = y% € EP t; = 1.
» General Step (k > 0):

(a) uk—argmax{< Zw >—f u)}

(b) yrt =wk — %u + pprox§gl_(uk —2wf), i

2
(€) tis1= ”7\/2”4%;
(d) whtl = yk+t 4 (?T:) (y“ — yb).

1,2,...

y Pi
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The Dual Block Proximal Gradient Method

» A major disadvantage of Algorithm 9 is the stepsize it uses.

» A way to circumvent this drawback is to employ a dual block proximal
gradient method.

» A dual problem to (Q):

(DQ)  Gopt = max{ —f7( ?:1 yi) — Z?:l g (—vi)
yeEr ——

Gi(yi)
> Suppose that the current point is y* = (yf,y5,...,y5). At each iteration we
pick an index i according to some rule and perform a proximal gradient step

on ith block:
y = prox,g (y,-k -V (3r, yf)) :
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Dual Representation

The Dual Block Proximal Gradient (DBPG) Method — dual representation
> Initialization: pick y° = (y?,y3,...,y%) € EP.
> General step (k > 0):
> pick an index ix € {1,2,...,p};
prongik (y,kk — an*(Ejl_’zl yf)) s J =k,

k+1 _
» compute yi = B ] .
Y J# ik

Lemma. The relation y; = proxig, (v,- = %Vf*(zle vj)) holds if and only
if

—

., 1 <
yi=Vi— X+ 1 Pro%Lg (X — Lvi),

~

where X = argmax {(x7 drivi) — f(x)} .
x€E
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Primal Representation
The Dual Block Proximal Gradient (DBPG) Method - primal

representation

Initialization. pick y° = (y},y3,...,yp) € E.
General step: for any k =0,1,2,... execute the following steps:

(a) pick ik €{1,2,...,p}.
(b) set xX = argmax {(x, Sy - f(x)}.
xeE

il y,-kk —oxk 4+ OProX,, /, (xk - y,-kk/a) L=k,
(c) sety ™ = k .
yj, J 7é I .

Possible stepsize strategies.

» cyclic. ix = (k mod p) + 1.

» randomized. iy is randomly picked from {1,2,..., p} by a uniform
distribution.
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Rates of Convergence of the Cyclic and Randomized
DBPG Methods

> O(1/k) rates of convergence of the sequences of dual objective function

values follow by the corresponding results on the block proximal gradient
method.

> O(1/k) rates of the primal sequence follow by the primal-dual relation.
Cyclic:
k—1)/2 22
() dopt — aly™) < max { (3)“ " (qupn — a(y")), ZELT L

. k—1)/2 2R?
(b) x#% x| < 2 max { (1) (qope — (y?)), ZLETE

Randomized:
(a) dopt — E&(a(y*™)) < ot (o lIY? — ¥ I1> + dopt — a(¥)).
(b) E§k|‘xk+1 - X*Hz < 0(p_,2_i+1) (i”yo - y*||2 + Gopt — q(yO))_
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THE END

THANK YOU FOR YOUR ATTENTION
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