Proximal-Based Methods Tutorial

Amir Beck
Technion - Israel Institute of Technology
Haifa, Israel

Tutorial Overview

The tutorial is all about first order methods, specifically those based on proximal computations

- Background: extended real-valued functions, subgradients, conjugate functions, the proximal operator
- proximal gradient
- fast proximal gradient (FISTA)
- smoothing
- block proximal gradient
- dual proximal gradient

Complement of Tutorial Overview

Unfortunately, the following important topics are not included:

- primal and dual projected subgradient
- non-Euclidean algorithms (mirror descent, non-Euclidean proximal gradient)
- conditional gradient
- alternating minimization
- ADMM

Underlying Spaces

- We will assume that the underlying vector spaces, usually denoted by \mathbb{V} or \mathbb{E}, are finite dimensional real inner product spaces with endowed inner product $\langle\cdot, \cdot\rangle$ and endowed norm $\|\cdot\|$.

Euclidean space: a finite dimensional real vector space equipped with an inner product $\langle\cdot, \cdot\rangle$ endowed with the norm $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$, which is also called the Euclidean norm.

- Except for one case, we will always assume that the underlying vector space is Euclidean

Extended Real-Valued Functions

- D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and optimization (2013).
- R. T. Rockafellar, Convex analysis (1970).

Extended Real-Valued Functions

- An extended real-valued function is a function defined over the entire underlying space that can take any real value, as well as the infinite values $-\infty$ and ∞.
- Infinite values arithmetic:

$$
\begin{array}{rlrl}
a+\infty=\infty+a & =\infty & & (-\infty<a<\infty), \\
a-\infty=-\infty+a & =-\infty & (-\infty<a<\infty), \\
a \cdot \infty=\infty \cdot a & =\infty & (0<a<\infty), \\
a \cdot(-\infty)=(-\infty) \cdot a & =-\infty & (0<a<\infty), \\
a \cdot \infty=\infty \cdot a & =-\infty & (-\infty<a<0), \\
a \cdot(-\infty)=(-\infty) \cdot a & =\infty & (-\infty<a<0), \\
0 \cdot \infty=\infty \cdot 0=0 \cdot(-\infty)=(-\infty) \cdot 0 & =0 . & & \\
0 . \infty & &
\end{array}
$$

- For an extended real-valued function $f: \mathbb{E} \rightarrow[-\infty, \infty]$, the effective domain or just the domain is the set

$$
\operatorname{dom}(f)=\{\mathbf{x} \in \mathbb{E}: f(\mathbf{x})<\infty\} .
$$

- For any subset $C \subseteq \mathbb{E}$, the indicator function of C is

$$
\delta_{C}(\mathbf{x})= \begin{cases}0 & x \in C \\ \infty & x \notin C\end{cases}
$$

Closedness

- The epigraph of an extended real-valued function $f: \mathbb{E} \rightarrow[-\infty, \infty]$ is defined by

$$
\operatorname{epi}(f)=\{(\mathbf{x}, y): f(\mathbf{x}) \leq y, \mathbf{x} \in \mathbb{E}, y \in \mathbb{R}\} \subseteq \mathbb{E} \times \mathbb{R}
$$

- A function $f: \mathbb{E} \rightarrow[-\infty, \infty]$ is called proper if it does not attain the value $-\infty$ and there exists at least one $\hat{\mathbf{x}} \in \mathbb{E}$ such that $f(\hat{\mathbf{x}})<\infty$, meaning that $\operatorname{dom}(f) \neq \emptyset$.
- A function $f: \mathbb{E} \rightarrow[-\infty, \infty]$ is called closed if its epigraph is closed.

> Theorem. The indicator function δ_{C} is closed if and only if C is closed.

Proof.

$$
\operatorname{epi}(f)=\left\{(\mathbf{x}, y) \in \mathbb{E} \times \mathbb{R}: \delta_{C}(\mathbf{x}) \leq y\right\}=C \times \mathbb{R}_{+},
$$

which is evidently closed if and only if C is closed. \square

Example

$$
f(x)= \begin{cases}\frac{1}{x}, & x>0, \\ \infty, & \text { else } .\end{cases}
$$

f is closed.

Lower Semicontinuity

Definition

- A function $f: \mathbb{E} \rightarrow[-\infty, \infty]$ is called lower semicontinuous at $\mathbf{x} \in \mathbb{E}$ if

$$
f(\mathbf{x}) \leq \liminf _{n \rightarrow \infty} f\left(\mathbf{x}_{n}\right),
$$

for any sequence $\left\{\mathbf{x}_{n}\right\}_{n \geq 1} \subseteq \mathbb{E}$ for which $\mathbf{x}_{n} \rightarrow \mathbf{x}$ as $n \rightarrow \infty$.

- A function $f: \mathbb{E} \rightarrow[-\infty, \infty]$ is called lower semicontinuous if it is lower semicontinuous at each point in \mathbb{E}.

Theorem. The following claims are equivalent:
(i) f is lower semicontinuous.
(ii) f is closed.
(iii) for any $\alpha \in \mathbb{R}$, the level set

$$
\operatorname{Lev}(f, \alpha)=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x}) \leq \alpha\right\}
$$

is closed.

Operations Preserving Closedness

Theorem.

(a) Let $\mathcal{A}: \mathbb{E} \rightarrow \mathbb{V}$ be a linear transformation and $\mathbf{b} \in \mathbb{V}$, and let $f: \mathbb{V} \rightarrow(-\infty, \infty]$ be closed. Then the function $g: \mathbb{E} \rightarrow[-\infty, \infty]$ given by

$$
g(\mathbf{x})=f(\mathcal{A}(\mathbf{x})+\mathbf{b})
$$

is closed.
(b) Let $f_{1}, f_{2}, \ldots, f_{m}: \mathbb{E} \rightarrow(-\infty, \infty]$ be extended real-valued closed functions, and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbb{R}_{+}$. Then the function $f=\sum_{i=1}^{m} \alpha_{i} f_{i}$ is closed.
(c) Let $f_{i}: \mathbb{E} \rightarrow(-\infty, \infty], i \in I$ be extended real-valued closed functions, where l is a given index set. Then the function

$$
f(\mathbf{x})=\max _{i \in 1} f_{i}(\mathbf{x}) .
$$

is closed.

Weierstrass theorem for closed functions

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper closed function, and assume that C is a compact set satisfying $C \cap \operatorname{dom}(f) \neq \emptyset$. Then
(a) f is bounded below over C.
(b) f attains a minimizer over C.

- A proper function $f: \mathbb{E} \rightarrow(-\infty, \infty]$ is called coercive if

$$
\lim _{\|\mathbf{x}\| \rightarrow \infty} f(\mathbf{x})=\infty
$$

Theorem. (attainment under coerciveness) Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a closed proper and coercive function and let $S \subseteq \mathbb{E}$ be a nonempty closed set satisfying $S \cap \operatorname{dom}(f) \neq \emptyset$. Then f attains a minimizer over S.

Convex Extended Real-Valued Functions

- An extended real-valued function is called convex if epi(f) is convex.
- $f: \mathbb{E} \rightarrow(-\infty, \infty]$ is convex $\Leftrightarrow \operatorname{dom}(f)$ is convex and the real-valued function $\tilde{f}: \operatorname{dom}(f) \rightarrow \mathbb{R}$ which is the restriction of f to $\operatorname{dom}(f)$ is convex over $\operatorname{dom}(f)$.
- Result: A proper function $f: \mathbb{E} \rightarrow(-\infty, \infty]$ is convex iff

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \text { for all } \lambda \in[0,1], \mathbf{x}, \mathbf{y} \in \mathbb{E}
$$

- Jensen's inequality

$$
f\left(\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i} f_{i}\left(\mathbf{x}_{i}\right)
$$

for any $\boldsymbol{\lambda} \in \Delta_{k}$ (k being an arbitrary positive integer), $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in \mathbb{E}$.

Operations Preserving Convexity

Theorem.

(a) Let $\mathcal{A}: \mathbb{E} \rightarrow \mathbb{V}$ be a linear transformation from \mathbb{E} to \mathbb{V} and $\mathbf{b} \in \mathbb{V}$, and let $f: \mathbb{V} \rightarrow(-\infty, \infty]$ be convex. Then $g: \mathbb{E} \rightarrow(-\infty, \infty]$ given by

$$
g(\mathbf{x})=f(\mathcal{A}(\mathbf{x})+\mathbf{b})
$$

is convex.
(b) Let $f_{1}, f_{2}, \ldots, f_{m}: \mathbb{E} \rightarrow(-\infty, \infty]$ be convex, and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbb{R}_{+}$. Then the function $\sum_{i=1}^{m} \alpha_{i} f_{i}$ is convex.
(c) Let $f_{i}: \mathbb{E} \rightarrow(-\infty, \infty], i \in I$ be convex, where I is a given index set. Then the function

$$
f(\mathbf{x})=\max _{i \in I} f_{i}(\mathbf{x})
$$

is convex.

Closedness Vs. Continuity

Closed functions are not necessarily continuous, but...

- If $f: \mathbb{E} \rightarrow[-\infty, \infty]$ is continuous over $\operatorname{dom}(f)$, which is assumed to be closed, then it is closed.
- 1D closed and convex functions are always continuous over their domain.
- Not correct for multi-dimensional functions...

Example: the I_{0}-norm function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f(\mathbf{x})=\|\mathbf{x}\|_{0} \equiv \#\left\{i: x_{i} \neq 0\right\} .
$$

f is closed but not continuous.

Support Functions

- Let $C \subseteq \mathbb{E}$ be nonempty. Then the support function of C, $\sigma_{C}: \mathbb{E} \rightarrow(-\infty, \infty]$ is given by

$$
\sigma_{C}(\mathbf{y}) \equiv \max _{\mathbf{y} \in C}\langle\mathbf{y}, \mathbf{x}\rangle .
$$

Theorem. Let $C \subseteq \mathbb{E}$ be a nonempty set. Then σ_{C} is a closed and convex function.

Proof. σ_{C} is a maximum of convex functions.

Examples of Support Functions

C	$\sigma_{C}(\mathbf{y})$	assumptions	Example No.					
$\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$	$\max _{i=1,2, \ldots, n}\left(\mathbf{b}_{i}, \mathbf{y}\right\rangle$	$\mathbf{b}_{i} \in \mathbb{E}$	1					
K	$\delta_{K^{\circ}(\mathbf{y})}$	$K-$ cone	2					
\mathbb{R}_{+}^{n}	$\delta_{\mathbb{R}_{-}^{n}}(\mathbf{y})$	$\mathbb{E}=\mathbb{R}^{n}$	3					
Δ_{n}	$\max \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$	$\mathbb{E}=\mathbb{R}^{n}$	4					
$\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A x} \leq \mathbf{0}\right\}$	$\delta_{\left\{\mathbf{A}^{T} \boldsymbol{\lambda}^{\prime}: \mathbf{\lambda} \in \mathbb{R}_{+}^{m}\right\}}(\mathbf{y})$	$\mathbb{E}=\mathbb{R}^{n}, \mathbf{A} \in$ $\mathbb{R}^{m \times n}$	5					
$\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{B x}=\mathbf{b}\right\}$	$\left\langle\mathbf{y}, \mathbf{x}_{0}\right\rangle+\delta_{\operatorname{Range}^{\left(\mathbf{B}^{T}\right)}}(\mathbf{y})$	$\mathbb{E}=\mathbb{R}^{n}, \mathbf{B} \in$ $\mathbb{R}^{m \times n}, \mathbf{b}$, $\mathbb{R}^{m}, \mathbf{B x}_{0}=\mathbf{b}$	6					
$B_{\\|\cdot\\|}[\mathbf{0}, 1]$	$\\|\mathbf{y}\\|_{*}$	$\\|-\operatorname{arbitrary}$ norm	7					

A Discontinuous Closed and Convex Function

If

$$
C=\left\{\left(x_{1}, x_{2}\right): x_{1}+\frac{x_{2}^{2}}{2} \leq 0\right\} .
$$

Then

$$
\sigma_{C}(\mathbf{y})= \begin{cases}\frac{y_{2}^{2}}{2 y_{1}}, & y_{1}>0 \\ 0, & y_{1}=y_{2}=0 \\ \infty, & \text { else }\end{cases}
$$

Subgradients

- D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and optimization (2013).
- J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization (2006).
- J. B. Hiriart-Urruty and C. Lemarechal. Convex analysis and minimization algorithms. I (1996).
- Y. Nesterov. Introductory lectures on convex optimization (2004).
- R. T. Rockafellar, Convex analysis (1970).

Subgradients

- Definition: Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper function, and let $\mathbf{x} \in \operatorname{dom}(f)$. A vector $\mathbf{g} \in \mathbb{E}$ is called a subgradient of f at \mathbf{x} if

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle \text { for all } \mathbf{y} \in \mathbb{E} .
$$

- The set of all subgradients of f at \mathbf{x} is called the subdifferential of f at \mathbf{x} and is denoted by $\partial f(\mathbf{x})$:

$$
\partial f(\mathbf{x}) \equiv\{\mathbf{g} \in \mathbb{E}: f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle \text { for all } \mathbf{y} \in \mathbb{E}\} .
$$

When $\mathbf{x} \notin \operatorname{dom}(f)$, we define $\partial f(\mathbf{x})=\emptyset$.

Closedness and Convexity of the Subdifferential Set

Theorem. Let $f: \mathbb{E} \rightarrow(\infty, \infty]$ be an extended real-valued function. Then the set $\partial f(\mathbf{x})$ is closed and convex for any $\mathbf{x} \in \mathbb{E}$.

Proof. For any $\mathbf{x} \in \mathbb{E}$,

$$
\partial f(\mathbf{x})=\bigcap_{\mathbf{y} \in \mathbb{E}} H_{\mathbf{y}},
$$

where $H_{\mathbf{y}}=\{\mathbf{g} \in \mathbb{E}: f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle\}$. Since the sets $H_{\mathbf{y}}$ are half-spaces, and in particular, closed and convex, it follows that $\partial f(\mathbf{x})$ is closed and convex. \square

Subdifferentiability

- If $\partial f(\mathbf{x}) \neq \emptyset, f$ it is called subdifferentiable at \mathbf{x}.

$$
\operatorname{dom}(\partial f) \equiv\{\mathbf{x} \in \mathbb{E}: \partial f(\mathbf{x}) \neq \emptyset\}
$$

Example:

$$
f(x)= \begin{cases}-\sqrt{x}, & x \geq 0 \\ \infty, & \text { else }\end{cases}
$$

Existence and Boundedness of $\partial f(\mathbf{x})$

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper convex function.

- If $\tilde{\mathbf{x}} \in \operatorname{int}(\operatorname{dom}(f))$, then $\partial f(\tilde{\mathbf{x}})$ is nonempty and bounded.
- If $\tilde{\mathbf{x}} \in \operatorname{ri}(\operatorname{dom}(f))$, then $\partial f(\tilde{\mathbf{x}})$ is nonempty.

Corollary. Let $f: \mathbb{E} \rightarrow \mathbb{R}$ be a convex function. Then f is subdifferentiable over \mathbb{E}.

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper convex function, and assume that $X \subseteq \operatorname{int}(\operatorname{dom}(f))$ is nonempty and compact. Then $Y=\bigcup_{\mathbf{x} \in X} \partial f(\mathbf{x})$ is nonempty and bounded.

The Directional Derivative

- Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper extended real-valued function and let $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$. Suppose that $\mathbf{0} \neq \mathbf{d} \in \mathbb{E}$. The directional derivative at \mathbf{x} in the direction $\mathbf{0} \neq \mathbf{d} \in \mathbb{E}$, if exists, is defined by

$$
f^{\prime}(\mathbf{x} ; \mathbf{d})=\lim _{\alpha \rightarrow 0^{+}} \frac{f(\mathbf{x}+\alpha \mathbf{d})-f(\mathbf{x})}{\alpha} .
$$

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper convex function, and let $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$. Then for any $\mathbf{d} \in \mathbb{E}$, the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ exists.

Differentiability

Definition. For a given function $f: \mathbb{E} \rightarrow(-\infty, \infty]$, and $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$, we say that f is differentiable at \mathbf{x} if there exists $\mathbf{g} \in \mathbb{E}$ such that

$$
f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+\langle\mathbf{g}, \mathbf{h}\rangle+o(\|\mathbf{h}\|) .
$$

In other words, $\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-\langle\mathbf{g}, \mathbf{h}\rangle}{\|\mathbf{h}\|}=0$.
\mathbf{g} is called the gradient, and is denoted by $\nabla f(\mathbf{x})$
Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$, and suppose that f is differentiable at $\mathbf{x} \in \operatorname{int}(\operatorname{dom} f)$. Then for any $\mathbf{d} \neq \mathbf{0}$

$$
f^{\prime}(\mathbf{x} ; \mathbf{d})=\langle\nabla f(\mathbf{x}), \mathbf{d}\rangle .
$$

Proof. $0=\lim _{\alpha \rightarrow 0^{+}} \frac{f(x+\alpha d)-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \alpha \mathbf{d}\rangle}{\|\alpha \mathbf{d}\|}=\frac{f^{\prime}(\mathbf{x} ; \mathbf{d})-\langle\nabla f(\mathbf{x}), \mathbf{d}\rangle}{\|\mathbf{d}\|}$, and hence $f^{\prime}(\mathbf{x} ; \mathbf{d})=\langle\nabla f(\mathbf{x}), \mathbf{d}\rangle$.

The Subdifferential at Differentiability Points

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper convex function, and let $\mathbf{x} \in$ $\operatorname{int}(\operatorname{dom}(f))$. If f is differentiable at \mathbf{x}, then $\partial f(\mathbf{x})=\{\nabla f(\mathbf{x})\}$. Conversely, if f has a unique subgradient at \mathbf{x}, then f is differentiable at \mathbf{x} and $\partial f(\mathbf{x})=$ $\{\nabla f(\mathbf{x})\}$.
Example: $f(\mathbf{x})=\|\mathbf{x}\|_{2}\left(\mathbb{E}=\mathbb{R}^{n}\right)$. Then $\partial f(\mathbf{x})= \begin{cases}\left\{\frac{\mathbf{x}}{\|\mathbf{x}\|_{2}}\right\}, & \mathbf{x} \neq \mathbf{0}, \\ B_{\|\cdot\|_{2}}[0,1], & \mathbf{x}=\mathbf{0} .\end{cases}$

What is the Gradient?

- Example 1: $\mathbb{E}=\mathbb{R}^{n}$ with $\langle\mathbf{x}, \mathbf{y}\rangle \equiv \mathbf{x}^{\top} \mathbf{y}: \nabla f(\mathbf{x})=D_{f}(\mathbf{x})$

$$
D_{f}(\mathbf{x}) \equiv\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(\mathbf{x}) \\
\frac{\partial f}{\partial x_{2}}(\mathbf{x}) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(\mathbf{x})
\end{array}\right)
$$

- Example 2: $\mathbb{E}=\mathbb{R}^{n}$ with $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{H y}$ with $\mathbf{H} \in \mathbb{S}_{++}^{n}$: $\nabla f(\mathbf{x})=\mathbf{H}^{-1} D_{f}(\mathbf{x})$.

Subdifferential Calculus

Theorem. Let $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be proper extended real-valued convex functions. Let $\mathbf{x} \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$. Then
(a) The following inclusion holds (weak result):

$$
\partial f_{1}(\mathbf{x})+\partial f_{2}(\mathbf{x}) \subseteq \partial\left(f_{1}+f_{2}\right)(\mathbf{x})
$$

(b) If in addition either $\mathbf{x} \in \operatorname{int}\left(\operatorname{dom}\left(f_{1}\right)\right) \cap \operatorname{int}\left(\operatorname{dom}\left(f_{2}\right)\right)$, then (strong result):

$$
\partial f_{1}(\mathbf{x})+\partial f_{2}(\mathbf{x})=\partial\left(f_{1}+f_{2}\right)(\mathbf{x})
$$

Sum Rule of Subdifferential Calculus - General Result

Theorem. Let $f_{1}, f_{2}, \ldots, f_{m}$ be proper convex functions and assume that $\bigcap_{i=1}^{m} \mathrm{ri}\left(\operatorname{dom} f_{i}\right) \neq \emptyset$. Then for any x

$$
\partial f(\mathbf{x})=\partial f_{1}(\mathbf{x})+\partial f_{2}(\mathbf{x})+\ldots+f_{m}(\mathbf{x})
$$

Subdifferential Calculus - Affine Change of Variables

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper convex function and $\mathcal{A}: \mathbb{V} \rightarrow$ \mathbb{E} be a linear transformation. Let $h(\mathbf{x})=f(\mathcal{A}(\mathbf{x})+\mathbf{b})$ with $\mathbf{b} \in \mathbb{E}$. Assume that h is proper:

$$
\operatorname{dom}(h)=\{\mathbf{x} \in \mathbb{V}: \mathcal{A}(\mathbf{x})+\mathbf{b} \in \operatorname{dom}(f)\} \neq \emptyset
$$

(a) (weak affine transformation rule of subdifferential calculus) For any $\mathbf{x} \in \operatorname{dom}(h)$,

$$
\mathcal{A}^{T}(\partial f(\mathcal{A}(\mathbf{x})+\mathbf{b})) \subseteq \partial h(\mathbf{x})
$$

(b) (affine transformation rule of subdifferential calculus) If $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(h))$ and $\mathcal{A}(\mathbf{x})+\mathbf{b} \in \operatorname{int}(\operatorname{dom}(f))$, then

$$
\partial h(\mathbf{x})=\mathcal{A}^{T}(\partial f(\mathcal{A}(\mathbf{x})+\mathbf{b})) .
$$

Chain Rule of Subdifferential Calculus

Theorem Let $f: \mathbb{E} \rightarrow \mathbb{R}$ be a convex function and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a nondecreasing convex function. Let $\mathbf{x} \in \mathbb{E}$ and suppose that g is differentiable at the point $f(\mathbf{x})$. Let $h=g \circ f$. Then

$$
\partial h(\mathbf{x})=g^{\prime}(f(\mathbf{x})) \partial f(\mathbf{x}) .
$$

Max Rule of Subdifferential Calculus

Lemma. Let $f_{1}, f_{2}, \ldots, f_{m}: \mathbb{E} \rightarrow(-\infty, \infty]$ be proper extended real-valued convex functions and let

$$
f(\mathbf{x}) \equiv \max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}
$$

Let $\mathbf{x} \in \bigcap_{i=1}^{m} \operatorname{int}\left(\operatorname{dom}\left(f_{i}\right)\right)$. Then

$$
\partial f(\mathbf{x})=\operatorname{conv}\left(\bigcup_{i \in I(\mathbf{x})} \partial f_{i}(\mathbf{x})\right)
$$

where

$$
I(\mathbf{x})=\left\{i \in\{1,2, \ldots, m\}: f_{i}(\mathbf{x})=f(\mathbf{x})\right\} .
$$

Lipschitz Continuity and Boundedness of Subgradients

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper and convex function. Suppose that $X \subseteq \operatorname{int}(\operatorname{dom} f)$. Consider the following two claims:
(i) $|f(\mathbf{x})-f(\mathbf{y})| \leq L\|\mathbf{x}-\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in X$;
(ii) $\|\mathbf{g}\|_{*} \leq L$ for any $\mathbf{g} \in \partial f(\mathbf{x}), \mathbf{x} \in X$.

Then
(a) the implication (ii) \Rightarrow (i) holds;
(b) if X is open then (i) holds if and only if (ii) holds.

Fermat's Optimality Condition

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be an extended real-valued convex function. Then

$$
\begin{equation*}
\mathbf{x}^{*} \in \operatorname{argmin}\{f(\mathbf{x}): \mathbf{x} \in \mathbb{E}\} \tag{1}
\end{equation*}
$$

if and only if

$$
\mathbf{0} \in \partial f\left(\mathbf{x}^{*}\right)
$$

Proof. $\mathbf{0} \in \partial f\left(\mathbf{x}^{*}\right)$ is satisfied iff

$$
f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)+\left\langle\mathbf{0}, \mathbf{x}-\mathbf{x}^{*}\right\rangle \text { for any } \mathbf{x} \in \operatorname{dom}(f),
$$

which is the the same as (1).

Fermat-Weber Problem

Given m different points in $\mathbb{R}^{d}, \mathcal{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}\right\}$ ("anchors") and m positive weights $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$, the Fermat-Weber problem is given by

$$
\text { (FW) } \min _{\mathbf{x} \in \mathbb{R}^{d}}\left\{f(\mathbf{x}) \equiv \sum_{i=1}^{m} \omega_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|_{2}\right\} .
$$

- By Fermat's optimality optimality condition, \mathbf{x}^{*} is an optimal solution iff $\mathbf{0} \in \partial f\left(\mathbf{x}^{*}\right)$, meaning iff
- $\mathbf{x}^{*} \notin \mathcal{A}$ and $\sum_{i=1}^{m} \omega_{i} \frac{\mathbf{x}^{*}-\mathbf{a}_{i}}{\left\|\mathbf{x}^{*}-\mathbf{a}_{i}\right\|_{2}}=\mathbf{0}$ or for some $j \in\{1,2, \ldots, m\}$

$$
\mathbf{x}^{*}=\mathbf{a}_{j} \text { and }\left\|\sum_{i=1, i \neq j}^{m} \omega_{i} \frac{\mathbf{x}^{*}-\mathbf{a}_{i}}{\left\|\mathbf{x}^{*}-\mathbf{a}_{i}\right\|_{2}}\right\|_{2} \leq \omega_{j} .
$$

[Sturm, 1884] [Weiszfeld, 1937]

Optimality Conditions for the Composite Model (Mixed Convex/Nonconvex)

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be proper, and let $g: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper convex function such that $\operatorname{dom}(g) \subseteq \operatorname{int}(\operatorname{dom}(f))$. Consider the problem

$$
\text { (P) } \quad \min f(\mathbf{x})+g(\mathbf{x}) .
$$

(a) (necessary condition) If $\mathbf{x}^{*} \in \operatorname{dom}(g)$ is a local optimal solution of (P), and f is differentiable at \mathbf{x}^{*}, then

$$
\begin{equation*}
-\nabla f\left(\mathbf{x}^{*}\right) \in \partial g\left(\mathbf{x}^{*}\right) \tag{2}
\end{equation*}
$$

(b) (necessary and sufficient condition for convex problems) Suppose that f is convex. If f is differentiable at $\mathbf{x}^{*} \in \operatorname{dom}(g)$, then \mathbf{x}^{*} is a global optimal solution of (P) if and only if (2) is satisfied.

Stationarity in Composite Models

$$
(P) \quad \min f(\mathbf{x})+g(\mathbf{x})
$$

- $f: \mathbb{E} \rightarrow(-\infty, \infty]$ proper.
- $g: \mathbb{E} \rightarrow(-\infty, \infty]$ proper convex.
- $\operatorname{dom}(g) \subseteq \operatorname{int}(\operatorname{dom}(f))$.

Definition A point $\mathbf{x}^{*} \in \operatorname{dom} g$ in which f is differentiable is called a stationarity point of (P) if $-\nabla f\left(\mathbf{x}^{*}\right) \in \partial g\left(\mathbf{x}^{*}\right)$

Example: If $g(\mathbf{x})=\delta_{C}(\mathbf{x})$ for convex C, then stationarity is the same as

$$
\left\langle\nabla f\left(\mathbf{x}^{*}\right), \mathbf{x}-\mathbf{x}^{*}\right\rangle \geq 0
$$

Example: $\min f(\mathbf{x})+\lambda\|\mathbf{x}\|_{1}\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$, then stationarity is

$$
\frac{\partial f\left(\mathbf{x}^{*}\right)}{\partial x_{i}} \begin{cases}=-\lambda, & x_{i}^{*}>0 \\ =\lambda, & x_{i}^{*}<0 \\ \in[-\lambda, \lambda], & x_{i}^{*}=0\end{cases}
$$

Conjugate Functions

- D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and optimization (2013).
- J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization (2006).
- J. B. Hiriart-Urruty and C. Lemarechal. Convex analysis and minimization algorithms. I (1996).
- R. T. Rockafellar, Convex analysis (1970).

Conjugate Functions

Definition. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper extended real-valued function. The function $f: \mathbb{E} \rightarrow[-\infty, \infty]$ defined by

$$
f^{*}(\mathbf{y})=\max _{\mathbf{x} \in \mathbb{E}}\{\langle\mathbf{y}, \mathbf{x}\rangle-f(\mathbf{x})\}
$$

is called the conjugate function of f.
Result: Conjugate functions are always closed and convex (regardless of the properties of f)
Example: $f=\delta_{C}$, where $C \subseteq \mathbb{E}$ is nonempty. Then for any $\mathbf{y} \in \mathbb{E}$

$$
f^{*}(\mathbf{y})=\max _{\mathbf{x} \in \mathbb{E}}\left\{\langle\mathbf{y}, \mathbf{x}\rangle-\delta_{C}(\mathbf{x})\right\}=\max _{\mathbf{x} \in C}\langle\mathbf{y}, \mathbf{x}\rangle=\sigma_{C}(\mathbf{y})
$$

$$
\delta_{C}^{*}=\sigma_{C}
$$

The Biconjugate

The conjugacy operation can be invoked twice resulting with the biconjugacy operation. Specifically, for a function f we define

$$
f^{* *}(\mathbf{x})=\max _{\mathbf{y} \in \mathbb{E}}\langle\mathbf{x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})
$$

> Theorem $\left(f \geq f^{* *}\right)$. Let $f: \mathbb{E} \rightarrow[-\infty, \infty]$ be an extended real-valued function. Then $f(\mathbf{x}) \geq f^{* *}(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{E}$.

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a closed and proper extended realvalued function. Then $f^{* *}=f$.

Fenchel's Inequality

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be an extended real-valued proper function. Then for any $\mathbf{x} \in \mathbb{E}, \mathbf{y} \in \mathbb{E}$

$$
f(\mathbf{x})+f^{*}(\mathbf{y}) \geq\langle\mathbf{y}, \mathbf{x}\rangle .
$$

Simple Calculus Rules

function definition	conjugate
$g\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)=\sum_{i=1}^{m} f_{i}\left(\mathbf{x}_{i}\right)$	$g^{*}\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}\right)=\sum_{i=1}^{m} f_{i}^{*}\left(\mathbf{y}_{i}\right)$
$g(\mathbf{x})=\alpha f(\mathbf{x})$	$g^{*}(\mathbf{y})=\alpha f^{*}(\mathbf{y} / \alpha)$
$g(\mathbf{x})=\alpha f(\mathbf{x} / \alpha)$	$g^{*}(\mathbf{y})=\alpha f^{*}(\mathbf{y})$
$f(\mathcal{A}(\mathbf{x}-\mathbf{a}))+\langle\mathbf{b}, \mathbf{x}\rangle+c$	$f^{*}\left(\left(\mathcal{A}^{T}\right)^{-1}(\mathbf{y}-\mathbf{b})\right)+\langle\mathbf{a}, \mathbf{y}\rangle-c-\langle\mathbf{a}, \mathbf{b}\rangle$

Conjugates of Simple Functions

function (f)	dom f	conjugate $\left(f^{*}\right)$	assumptions									
$\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c$	\mathbb{R}^{n}	$\frac{1}{2}(\mathbf{y}-\mathbf{b})^{T} \mathbf{A}^{-1}(\mathbf{y}-\mathbf{b})-$ c	$\mathbf{A} \succ \mathbf{0}, \mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{b} \in$ $\mathbb{R}^{n}, c \in \mathbb{R}$									
$\sum_{i=1}^{n} x_{i} \log x_{i}$	\mathbb{R}_{+}^{n}	$\sum_{i=1}^{n} e^{y_{i}-1}$	-									
$\sum_{i=1}^{n} x_{i} \log x_{i}$	Δ_{n}	$\log \left(\sum_{i=1}^{n} e^{y_{i}}\right)$	-									
$\log \left(\sum_{i=1}^{n} e^{x_{i}}\right)$	\mathbb{R}^{n}	$\sum_{i=1}^{n} y_{i} \log y_{i}$ $\left(\operatorname{dom} f^{*}=\Delta_{n}\right)$	-									
$\delta_{C}(\mathbf{x})$	C	$\sigma_{C}(\mathbf{x})$	$\emptyset \neq C$ arbitrary									
$\sigma_{C}(\mathbf{x})$	\mathbb{R}^{n}	$\delta_{C}(\mathbf{x})$	$\emptyset \neq C$ closed, convex									
$\\|\mathbf{x}\\|$	\mathbb{R}^{n}	$\delta_{B_{\\|} \cdot\\| \\|_{*}[0,1]}$	$\\|\cdot\\|$ arbitrary norm									
$-\sqrt{1-\\|\mathbf{x}\\|^{2}}$	$B_{\\|\cdot\\| \\|}[\mathbf{0}, 1]$	$\sqrt{\\|\mathbf{y}\\|_{*}^{2}+1}$	$\\|\cdot\\|$ arbitrary norm									
$\frac{1}{p}\|x\|^{P}$	\mathbb{R}	$\frac{1}{q}\|y\|^{q}$	$p>1, \frac{1}{p}+\frac{1}{q}=1$									
$\frac{1}{2}\\|\mathbf{x}\\|^{2}$	\mathbb{R}^{n}	$\frac{1}{2}\\|\mathbf{y}\\|_{*}^{2}$	$\\|\cdot\\|$ arbitrary norm									

Conjugate Subgradient Theorem

Theorem. Let $f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be a proper convex extended real-valued function. The following two claims are equivalent for any $\mathbf{x} \in \mathbb{E}, \mathbf{y} \in \mathbb{E}$:
(i) $\langle\mathbf{x}, \mathbf{y}\rangle=f(\mathbf{x})+f^{*}(\mathbf{y})$.
(ii) $\mathbf{y} \in \partial f(\mathbf{x})$.

If, in addition f is closed, then (i) and (ii) are equivalent to
(iii) $\mathbf{x} \in \partial f^{*}(\mathbf{y})$.

- If f is proper closed and convex, the conjugate subgradient theorem can be written as

$$
\begin{aligned}
\partial f^{*}(\mathbf{y}) & =\underset{\mathbf{x}}{\operatorname{argmax}}\{\langle\mathbf{y}, \mathbf{x}\rangle-f(\mathbf{x})\} \\
\partial f(\mathbf{x}) & =\underset{\mathbf{y}}{\operatorname{argmax}}\left\{\langle\mathbf{x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})\right\}
\end{aligned}
$$

Fenchel's Duality Theorem

$$
(P) \min _{\mathbf{x} \in \mathbb{E}} f(\mathbf{x})+g(\mathbf{x}) .
$$

Lagrangian duality:
$-\min _{\mathbf{x}, \mathbf{z} \in \mathbb{E}}\{f(\mathbf{x})+g(\mathbf{z}): \mathbf{x}=\mathbf{z}\}$

- Lagrangian:

$$
L(\mathbf{x}, \mathbf{z} ; \mathbf{y})=f(\mathbf{x})+g(\mathbf{z})+\langle\mathbf{y}, \mathbf{z}-\mathbf{x}\rangle=-[\langle\mathbf{y}, \mathbf{x}\rangle-f(\mathbf{x})]-[\langle-\mathbf{y}, \mathbf{z}\rangle-g(\mathbf{z})]
$$

- Dual objective function: $q(\mathbf{y})=\min _{\mathbf{x}, \mathbf{z}} L(\mathbf{x}, \mathbf{z} ; \mathbf{y})=-f^{*}(\mathbf{y})-g^{*}(-\mathbf{y})$

Fenchel's dual problem:

$$
\text { (D) } \max _{\mathbf{y} \in \mathbb{E}^{*}}\left\{-f^{*}(\mathbf{y})-g^{*}(-\mathbf{y})\right\}
$$

Theorem (Fenchel's duality theorem) Let $f, g: \mathbb{E} \rightarrow(-\infty, \infty$] be proper convex functions. If ri $(\operatorname{dom}(f)) \cap \mathrm{ri}(\operatorname{dom}(g)) \neq \emptyset$, then

$$
\min _{\mathbf{x} \in \mathbb{E}}\{f(\mathbf{x})+g(\mathbf{x})\}=\max _{\mathbf{y} \in \mathbb{E}^{*}}\left\{-f^{*}(\mathbf{y})-g^{*}(-\mathbf{y})\right\}
$$

and the maximum in the right-hand problem is attained whenever it is finite.

The Proximal Operator

- J. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France (1965).
- H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces (2011).
- P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward backward splitting, Multiscale Model. Simul. (2005).
- N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in Optimization (2014).

The Proximal Operator

Definition. Given a closed, proper and convex function g, the proximal mapping of g is defined by

$$
\operatorname{prox}_{g}(\mathbf{x})=\underset{\mathbf{u} \in \mathbb{E}}{\operatorname{argmin}}\left\{g(\mathbf{u})+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}\right\} .
$$

Examples

- Constant. If $f \equiv c$ for some $c \in \mathbb{R}$, then

$$
\operatorname{prox}_{f}(\mathbf{x})=\underset{\mathbf{u} \in \mathbb{E}}{\operatorname{argmin}}\left\{c+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}\right\}=\mathbf{x}
$$

The identity mapping.

- Affine. Let $f(\mathbf{x})=\langle\mathbf{a}, \mathbf{x}\rangle+b$, where $\mathbf{a} \in \mathbb{E}$ and $b \in \mathbb{R}$. Then

$$
\begin{aligned}
\operatorname{prox}_{f}(\mathbf{x}) & =\underset{\mathbf{u} \in \mathbb{E}}{\operatorname{argmin}}\left\{\langle\mathbf{a}, \mathbf{u}\rangle+b+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}\right\} \\
& =\mathbf{x}-\mathbf{a}
\end{aligned}
$$

- Let $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c$, where $\mathbf{A} \in \mathbb{S}_{+}^{n}, \mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. The vector $\operatorname{prox}_{f}(\mathbf{x})$ is the solution of

$$
\min _{\mathbf{u} \in \mathbb{E}}\left\{\frac{1}{2} \mathbf{u}^{T} \mathbf{A} \mathbf{u}+\mathbf{b}^{T} \mathbf{u}+c+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}\right\} .
$$

The optimal solution is attained at \mathbf{u} satisfying $(\mathbf{A}+\mathbf{I}) \mathbf{u}=\mathbf{x}-\mathbf{b}$, and hence

$$
\operatorname{prox}_{f}(\mathbf{x})=\mathbf{u}=(\mathbf{A}+\mathbf{I})^{-1}(\mathbf{x}-\mathbf{b})
$$

The Orthogonal Projection

- Definition. Given a nonempty closed and convex set $C \subseteq \mathbb{E}$ and $\mathbf{x} \in \mathbb{E}$, the orthogonal projection operator $P_{C}: \mathbb{E} \rightarrow C$ is defined by

$$
P_{C}(\mathbf{x}) \equiv \underset{\mathbf{y} \in C}{\operatorname{argmin}}\|\mathbf{y}-\mathbf{x}\| .
$$

First projection theorem. Let $C \subseteq \mathbb{E}$ be a nonempty closed convex set. Then $P_{C}(\mathbf{x})$ is a singleton.

Second projection theorem. Let $C \subseteq \mathbb{E}$ be a nonempty closed and convex set. Let $\mathbf{u} \in C$. Then $\mathbf{u}=P_{C}(\mathbf{x})$ if and only if

$$
\langle\mathbf{x}-\mathbf{u}, \mathbf{y}-\mathbf{u}\rangle \leq 0 \text { for any } \mathbf{y} \in C
$$

Prox of Indicator $=$ Orthogonal Projection

- If $C \subseteq \mathbb{E}$ is nonempty, then $\operatorname{prox}_{\delta_{C}}=P_{C}$

$$
\operatorname{prox}_{\delta_{C}}(\mathbf{x})=\underset{\mathbf{u} \in \mathbb{E}}{\operatorname{argmin}}\left\{\delta_{C}(\mathbf{u})+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}\right\}=\underset{\mathbf{u} \in C}{\operatorname{argmin}}\|\mathbf{u}-\mathbf{x}\|^{2}=P_{C}(\mathbf{x}) .
$$

First prox theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper closed and convex function. Then $\operatorname{prox}_{f}(\mathbf{x})$ is a singleton for any $\mathbf{x} \in \mathbb{E}$.

Proof?

Strongly Convex Functions

Definition. A function $f: \mathbb{E} \rightarrow(-\infty, \infty]$ is called σ-strongly convex for a given $\sigma>0$, if $\operatorname{dom}(f)$ is convex and the following inequality holds for any $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$ and $\lambda \in[0,1]$:

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})-\frac{1}{2} \sigma \lambda(1-\lambda)\|\mathbf{x}-\mathbf{y}\|^{2} .
$$

- A function is strongly convex if it is σ-strongly convex for some $\sigma>0$.

Theorem. $f: \mathbb{E} \rightarrow(-\infty, \infty]$ is a strongly convex function if and only if the function $f(\cdot)-\frac{\sigma}{2}\|\cdot\|^{2}$ is convex.

- The proof is extremely straightforward.
- The above characterization is relevant only for Euclidean spaces.
- σ-strongly convex+convex is σ-strongly convex.

Example: $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c\left(\mathbf{A} \in \mathbb{S}^{n}, \mathbf{b} \in \mathbb{R}^{n}, c \in \mathbb{R}\right)$ is strongly convex with parameter $\lambda_{\min }(\mathbf{A})$.

First Order Characterizations of Strong Convexity

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper closed and convex function. Then for a given $\sigma>0$, the following three claims are equivalent:
(i) f is σ-strongly convex.
(ii)

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle+\frac{\sigma}{2}\|\mathbf{y}-\mathbf{x}\|^{2}
$$

for any $\mathbf{x} \in \operatorname{dom}(\partial f), \mathbf{y} \in \operatorname{dom}(f)$ and $\mathbf{g} \in \partial f(\mathbf{x})$.
(iii)

$$
\left\langle\mathbf{g}_{\mathbf{x}}-\mathbf{g}_{\mathbf{y}}, \mathbf{x}-\mathbf{y}\right\rangle \geq \sigma\|\mathbf{x}-\mathbf{y}\|^{2}
$$

for any $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(\partial f)$ and $\mathbf{g}_{\mathbf{x}} \in \partial f(\mathbf{x}), \mathbf{g}_{\mathbf{y}} \in \partial f(\mathbf{y})$.

Existence and Uniqueness of a Minimizer of Closed Strongly Convex Functions

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper closed and σ-strongly convex function ($\sigma>0$). Then
(a) f has a unique minimizer.
(b) $f(\mathbf{x})-f\left(\mathbf{x}^{*}\right) \geq \frac{\sigma}{2}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|^{2}$ for all $\mathbf{x} \in \operatorname{dom}(f)$, where \mathbf{x}^{*} is the unique minimizer of f.

Conclusion: the first prox theorem.
First prox theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper closed and convex function. Then $\operatorname{prox}_{f}(\mathbf{x})$ is a singleton for any $\mathbf{x} \in \mathbb{E}$.

Proof.

- For any $\mathbf{x} \in \mathbb{E}$,

$$
\begin{equation*}
\operatorname{prox}_{f}(\mathbf{x})=\underset{\mathbf{u} \in \mathbb{E}}{\operatorname{argmin}} \tilde{f}(\mathbf{u}, \mathbf{x}), \tag{3}
\end{equation*}
$$

where $\tilde{f}(\mathbf{u}, \mathbf{x})=f(\mathbf{u})+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}$.

- $\tilde{f}(\cdot, \mathbf{x})$ is a proper closed and 1 -strongly convex function.
- Therefore, there exists a unique minimizer to the problem in (3).

Necessity of the Conditions in the First Prox Theorem

- When f is not convex and/or closed, the prox is not guaranteed to uniquely exist, or even to exist at all.

$$
\begin{aligned}
& g_{1}(x) \equiv 0, \\
& g_{2}(x)= \begin{cases}0, & x \neq 0, \\
-\lambda, & x=0,\end{cases} \\
& g_{3}(x)= \begin{cases}0, & x \neq 0, \\
\lambda, & x=0\end{cases}
\end{aligned}
$$

$\operatorname{prox}_{g_{1}}(x)=x, \operatorname{prox}_{g_{2}}(x)=\left\{\begin{array}{ll}\{0\}, & |x|<\sqrt{2 \lambda}, \\ \{x\}, & |x|>\sqrt{2 \lambda}, \\ \{0, x\}, & |x|=\sqrt{2 \lambda} .\end{array}, \operatorname{prox}_{g_{3}}(x)= \begin{cases}\{x\}, & x \neq 0, \\ \emptyset, & x=0 .\end{cases}\right.$

- Uniquness is not guaranteed in any case.
- Existence is guaranteed whenever f is proper closed and the function $\mathbf{u} \mapsto f(\mathbf{u})+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}$ is coercive.

Basic Calculus Rules

$f(\mathrm{x})$	$\operatorname{prox}_{f}(\mathbf{x})$	assumptions								
$\sum_{i=1}^{m} f_{i}\left(\mathbf{x}_{i}\right)$	$\operatorname{prox}_{f_{1}}\left(\mathbf{x}_{1}\right) \times \cdots \times \operatorname{prox}_{f_{m}}\left(\mathbf{x}_{m}\right)$									
$g(\lambda \mathbf{x}+\mathbf{a})$	$\frac{1}{\lambda}\left[\operatorname{prox}_{\lambda^{2} g}(\mathbf{a}+\lambda \mathbf{x})-\mathbf{a}\right]$	$\begin{aligned} & \lambda \neq 0, \mathbf{a} \in \mathbb{E}, g \\ & \text { proper } \end{aligned}$								
$\lambda g(x / \lambda)$	$\lambda \operatorname{prox}_{g / \lambda}(\mathrm{x} / \lambda)$	$\lambda>0, g$ proper								
$\begin{aligned} & g(\mathbf{x})+\frac{c}{2}\\|\mathbf{x}\\|^{2}+ \\ & \langle\mathbf{a}, \mathbf{x}\rangle+\gamma \end{aligned}$	$\operatorname{prox}_{\frac{1}{c+1} g}\left(\frac{\mathbf{x}-\mathbf{a}}{c+1}\right)$	$\begin{aligned} & \mathbf{a} \in \mathbb{E}, c \\ & 0, \gamma \in \mathbb{R}, \\ & \text { proper } \end{aligned}$								
$g(\mathcal{A}(\mathbf{x})+\mathbf{b})$	$\mathbf{x}+\frac{1}{\alpha} \mathcal{A}^{T}\left(\operatorname{prox}_{\alpha g}(\mathcal{A}(\mathbf{x})+\mathbf{b})-\mathcal{A}(\mathbf{x})-\mathbf{b}\right)$									
$g(\\|x\\|)$	$\begin{array}{ll} \operatorname{prox}_{g}(\\|\mathbf{x}\\|) \frac{\mathbf{x}}{\\|x\\|}, & \mathbf{x} \neq \mathbf{0} \\ \left\{\mathbf{u}:\\|\mathbf{u}\\|=\operatorname{prox}_{g}(0)\right\}, & \mathbf{x}=\mathbf{0} \end{array}$	g proper closed convex, dom (g) \subseteq $[0, \infty)$ 								

Examples or Prox Computations

f	$\operatorname{dom} f$	prox $_{f}$	assumptions				
$\frac{1}{2} \mathbf{x}^{\top} \mathbf{A x}+\mathbf{b}^{\top} \mathbf{x}+\mathrm{c}$	\mathbb{R}^{n}	$(\mathbf{A}+\mathbf{I})^{-1}(\mathbf{x}-\mathbf{b})$	$\mathbf{A} \in \mathbb{S}_{++}^{n}, \mathbf{b} \in \mathbb{R}^{n}, c \in \mathbb{R}$				
$\lambda\\|\mathbf{x}\\|$	\mathbb{E}	$\left[1-\frac{\lambda}{\\|x\\|}\right]_{+} \mathbf{x}$	Euclidean norm, $\lambda>0$				
$\lambda\\|\mathbf{x}\\|_{1}$	\mathbb{R}^{n}	$[\|\mathbf{x}\|-\lambda \mathbf{e}]_{+} \circ \operatorname{sgn}(\mathbf{x})$	$\lambda>0$				
$-\lambda \sum_{j=1}^{n} \log x_{j}$	\mathbb{R}_{++}^{n}	$\left(\frac{x_{j}+\sqrt{x_{j}^{2}+4 \lambda}}{2}\right)_{j=1}^{n}$	$\lambda>0$				
$\delta_{C}(\mathbf{x})$	\mathbb{E}	$P_{C}(\mathbf{x})$	$C \subseteq \mathbb{E}$				
$\lambda \sigma_{C}(\mathbf{x})$	\mathbb{E}	$\mathbf{x}-\lambda P_{C}(\mathbf{x} / \lambda)$	C closed and convex				
$\lambda\\|\mathbf{x}\\|$	\mathbb{E}	$\mathbf{x}-\lambda P_{B_{\\|\cdot\\| *}}[0,1](\mathrm{x} / \lambda)$	arbitrary norm				
$\lambda \max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$	\mathbb{R}^{n}	$\mathbf{x}-\operatorname{prox}_{\Delta_{n}}(\mathbf{x} / \boldsymbol{\lambda})$	$\lambda>0$				
$\lambda d_{C}(\mathbf{x})$	\mathbb{E}	$\mathbf{x}+\min \left\{\frac{\lambda}{d_{C}(\mathbf{x})}, 1\right\}\left(P_{C}(\mathbf{x})-\mathbf{x}\right)$	C closed convex				
$\frac{\lambda}{2} d_{C}(\mathbf{x})^{2}$	\mathbb{E}	$\frac{\lambda}{\lambda+1} P_{C}(\mathbf{x})+\frac{1}{\lambda+1} \mathbf{x}$	C closed convex				

Prox of I_{1}-Norm

- $g(\mathbf{x})=\lambda\|\mathbf{x}\|_{1}(\lambda>0)$
- $g(\mathbf{x})=\sum_{i=1}^{n} \varphi\left(x_{i}\right)$, where $\varphi(t)=\lambda|t|$.
- $\operatorname{prox}_{\varphi}(s)=\mathcal{T}_{\lambda}(s)$, where \mathcal{T}_{λ} is defined as

$$
\mathcal{T}_{\lambda}(y)=[|y|-\lambda]_{+} \operatorname{sgn}(y)= \begin{cases}y-\lambda, & y \geq \lambda, \\ 0, & |y|<\lambda, \\ y+\lambda, & y \leq-\lambda\end{cases}
$$

is the soft thresholding operator.

- By the separability of the I_{1}-norm, $\operatorname{prox}_{g}(\mathbf{x})=\left(\mathcal{T}_{\lambda}\left(x_{j}\right)\right)_{j=1}^{n}$. We expend the definition of the soft thresholding operator and write

$$
\operatorname{prox}_{g}(\mathbf{x})=\mathcal{T}_{\lambda}(\mathbf{x}) \equiv\left(\mathcal{T}_{\lambda}\left(x_{j}\right)\right)_{j=1}^{n}=[|\mathbf{x}|-\lambda \mathbf{e}]_{+} \odot \operatorname{sgn}(\mathbf{x}) .
$$

The Second Prox Theorem

Theorem Let $g: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper, closed and convex function. Then
(i) $\mathbf{u}=\operatorname{prox}_{g}(\mathbf{x})$.
(ii) $\mathbf{x}-\mathbf{u} \in \partial g(\mathbf{u})$.
(iii) $g(\mathbf{y}) \geq g(\mathbf{u})+\langle\mathbf{x}-\mathbf{u}, \mathbf{y}-\mathbf{u}\rangle$ for any $\mathbf{y} \in \mathbb{E}$.

Proof.

- (i) is satisfied if and only if \mathbf{u} a minimizer of the problem

$$
\min _{\mathbf{u}}\left\{g(\mathbf{u})+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}\right\}
$$

- By Fermat's optimality condition, this is equivalent to (ii).
- The equivalence to (iii) follows by the definition of the subgradient.

Generalization of the second projection theorem!
Corollary: \mathbf{x} is a minimizer of a closed, proper, convex function f iff $\mathbf{x}=\operatorname{prox}_{f}(\mathbf{x})$

Firm Nonexpansivity of the Prox Operator

Theorem. For any $\mathbf{x}, \mathbf{y} \in \mathbb{E}$
(i) $\left\langle\mathbf{x}-\mathbf{y}, \operatorname{prox}_{h}(\mathbf{x})-\operatorname{prox}_{h}(\mathbf{y})\right\rangle \geq\left\|\operatorname{prox}_{h}(\mathbf{x})-\operatorname{prox}_{h}(\mathbf{y})\right\|^{2}$.
(ii) $\left\|\operatorname{prox}_{h}(\mathbf{x})-\operatorname{prox}_{h}(\mathbf{y})\right\| \leq\|\mathbf{x}-\mathbf{y}\|$.

Proof.

- Denote $\mathbf{u}=\operatorname{prox}_{h}(\mathbf{x}), \mathbf{v}=\operatorname{prox}_{h}(\mathbf{y})$.
- $\mathbf{x}-\mathbf{u} \in \partial h(\mathbf{u}), \mathbf{y}-\mathbf{v} \in \partial h(\mathbf{v})$.
- By the subgradient inequality

$$
\begin{aligned}
& f(\mathbf{v}) \geq f(\mathbf{u})+\langle\mathbf{x}-\mathbf{u}, \mathbf{v}-\mathbf{u}\rangle, \\
& f(\mathbf{u}) \geq f(\mathbf{v})+\langle\mathbf{y}-\mathbf{v}, \mathbf{u}-\mathbf{v}\rangle .
\end{aligned}
$$

- Summing the above two inequalities, we obtain $\langle(\mathbf{x}-\mathbf{u})-(\mathbf{y}-\mathbf{v}), \mathbf{u}-\mathbf{v}\rangle \geq 0$.
- Thus, $\langle\mathbf{u}-\mathbf{v}, \mathbf{x}-\mathbf{y}\rangle \geq\|\mathbf{u}-\mathbf{v}\|^{2}$.
- (ii) follows from Cauchy-Schwarz.

Moreau Decomposition

Theorem. Let f be a closed, proper and extended real-valued convex function. Then for any $\mathbf{x} \in \mathbb{E}$

$$
\operatorname{prox}_{f}(\mathbf{x})+\operatorname{prox}_{f^{*}}(\mathbf{x})=\mathbf{x}
$$

Proof.

- Let $\mathbf{x} \in \mathbb{E}, \mathbf{u}=\operatorname{prox}_{f}(\mathbf{x})$.
- $\mathbf{x}-\mathbf{u} \in \partial f(\mathbf{u})$
- iff $\mathbf{u} \in \partial f^{*}(\mathbf{x}-\mathbf{u})$.
- iff $\mathbf{x}-\mathbf{u}=\operatorname{prox}_{f^{*}}(\mathbf{x})$.
- Thus,

$$
\operatorname{prox}_{f}(\mathbf{x})+\operatorname{prox}_{f^{*}}(\mathbf{x})=\mathbf{u}+(\mathbf{x}-\mathbf{u})=\mathbf{x}
$$

A direct consequence (extended Moreau decomposition)

$$
\operatorname{prox}_{\lambda f}(\mathbf{x})+\lambda \operatorname{prox}_{f^{*} / \lambda}(\mathbf{x} / \lambda)=\mathbf{x}
$$

Prox of Support Functions

Let C be a nonempty closed and convex set, and let $\lambda>0$. Then

$$
\operatorname{prox}_{\lambda \sigma_{C}}(\mathbf{x})=\mathbf{x}-\lambda P_{C}(\mathbf{x} / \lambda) .
$$

Proof. By the extended Moreau decomposition formula

$$
\operatorname{prox}_{\lambda \sigma_{C}}(\mathbf{x})=\mathbf{x}-\lambda \operatorname{prox}_{\lambda^{-1} \sigma_{C}^{*}}(\mathbf{x} / \lambda)=\mathbf{x}-\lambda \operatorname{prox}_{\lambda^{-1} \delta_{C}}(\mathbf{x} / \lambda)=\mathbf{x}-\lambda P_{C}(\mathbf{x} / \lambda)
$$

Examples:

- $\operatorname{prox}_{\lambda\|\cdot\|_{\alpha}}(\mathbf{x})=\mathbf{x}-\lambda P_{B_{\|\cdot\| \|_{\alpha}}[0,1]}(\mathbf{x} / \lambda) .\left(\|\cdot\|_{\alpha}-\operatorname{arbitrary}\right.$ norm $)$
$-\operatorname{prox}_{\lambda\|\cdot\|_{\infty}}(\mathbf{x})=\mathbf{x}-\lambda P_{B_{\|\cdot\|_{1}}[\mathbf{0}, 1]}(\mathbf{x} / \lambda)$.
- $\operatorname{prox}_{\lambda \max (\cdot)}(\mathbf{x})=\mathbf{x}-\lambda P_{\Delta_{n}}(\mathbf{x} / \lambda)$.

The Proximal Gradient Method

- A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. (2009).
- A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal-recovery problems, In Convex optimization in signal processing and communications (2010)
- H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces (2011).
- P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward backward splitting, Multiscale Model. Simul. (2005).
- N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in Optimization (2014).
- J. Nutini, M. Schmidt, I. H. Laradji, M. Friendlander, and H. Koepke, Coordinate descent converges faster with the gauss-southwell rule than random selection, 32nd International Conference on Machine Learning (2015).

Preliminaries - Smoothness

Definition. Let $L \geq 0$. A function $f: \mathbb{E} \rightarrow(-\infty, \infty]$ is said to be L-smooth over a set $D \subseteq \operatorname{int}(\operatorname{dom}(f))$ if it is differentiable over D and satisfies

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{*} \leq L\|\mathbf{x}-\mathbf{y}\| \text { for all } \mathbf{x}, \mathbf{y} \in D
$$

The constant L is called the smoothness parameter.

- We consider here also non-Euclidean norms.
- The class of L-smooth functions is denoted by $C_{L}^{1,1}(D)$.
- When $D=\mathbb{E}$, the class is often denoted by $C_{L}^{1,1}$.
- The class of functions which are L-smooth for some $L \geq 0$ is denoted by $C^{1,1}$.
- If a function is L_{1}-smooth, then it is also L_{2}-smooth for any $L_{2} \geq L_{1}$.

Examples:

- $f(\mathbf{x})=\langle\mathbf{a}, \mathbf{x}\rangle+\mathbf{b}, \mathbf{a} \in \mathbb{E}, b \in \mathbb{R}$ (0-smooth).
- $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c, \mathbf{A} \in \mathbb{S}^{n}, \mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}\left(\|\mathbf{A}\|_{p, q}\right.$-smooth if \mathbb{R}^{n} is endowed with the I_{p}-norm).
- $f(\mathbf{x})=\frac{1}{2} d_{C}^{2}(f: \mathbb{E} \rightarrow \mathbb{R})$ (1-smooth)

The Descent Lemma

Lemma. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be an L-smooth function $(L \geq 0)$ over a given convex set D. Then for any $\mathbf{x}, \mathbf{y} \in D$,

$$
f(\mathbf{y}) \leq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2} .
$$

Proof.

- By the fundamental theorem of calculus:

$$
f(\mathbf{y})-f(\mathbf{x})=\int_{0}^{1}\langle\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x})), \mathbf{y}-\mathbf{x}\rangle d t .
$$

- $f(\mathbf{y})-f(\mathbf{x})=\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\int_{0}^{1}\langle\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle d t$.
- Thus,

$$
\begin{aligned}
|f(\mathbf{y})-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle| & =\left|\int_{0}^{1}\langle\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle d t\right| \\
& \stackrel{(*)}{\leq} \int_{0}^{1}\|\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x})\|_{*} \cdot\|\mathbf{y}-\mathbf{x}\| d t \\
& \leq \int_{0}^{1} t L\|\mathbf{y}-\mathbf{x}\|^{2} d t=\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2},
\end{aligned}
$$

Characterizations of L-smoothness

Theorem. Let $f: \mathbb{E} \rightarrow \mathbb{R}$ be a convex function, differentiable over \mathbb{E}, and let $L>0$. Then the following claims are equivalent:
(i) f is L-smooth.
(ii) $f(\mathbf{y}) \leq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.
(iii) $f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{1}{2 L}\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{*}^{2}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.
(iv) $\langle\nabla f(\mathbf{x})-\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle \geq \frac{1}{L}\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{*}^{2}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.
(v) $f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \geq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})-\frac{L}{2} \lambda(1-\lambda)\|\mathbf{x}-\mathbf{y}\|^{2}$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{E}$ and $\lambda \in[0,1]$.

L-Smoothness and Boundedness of the Hessian

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a twice continuously differentiable function over \mathbb{R}^{n}. Then for a given $L \geq 0$, the following two claims are equivalent:
(i) f is L-smooth w.r.t. the I_{p} norm $(p \geq 1)$.
(ii) $\left\|\nabla^{2} f(\mathbf{x})\right\|_{p, q} \leq L$ for any $\mathbf{x} \in \mathbb{R}^{n}$, where q satisfies $\frac{1}{p}+\frac{1}{q}=1$.

Corollary. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a twice continuously differentiable convex function over \mathbb{R}^{n}. Then f is L-smooth w.r.t. the I_{2}-norm iff $\lambda_{\max }\left(\nabla^{2} f(\mathbf{x})\right) \leq$ L for any $\mathbf{x} \in \mathbb{R}^{n}$.

Examples

- $f(\mathbf{x})=\sqrt{1+\|\mathbf{x}\|_{2}^{2}}\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$. 1-smooth w.r.t. to I_{2}.
- $f(\mathbf{x})=\log \left(e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}\right)\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$. 1-smooth w.r.t. I_{2} and I_{∞}-norms.

The Proximal Gradient Method (PGM)

The Proximal Gradient Method aims to solve the composite model:

$$
\text { (P) } \quad \min \{F(\mathbf{x}) \equiv f(\mathbf{x})+g(\mathbf{x}): \mathbf{x} \in \mathbb{E}\}
$$

(A) $g: \mathbb{E} \rightarrow(-\infty, \infty]$ is proper closed and convex.
(B) $f: \mathbb{E} \rightarrow(-\infty, \infty]$ is proper and closed; $\operatorname{dom}(g) \subseteq \operatorname{int}(\operatorname{dom}(f))$ and f L_{f}-smooth over int(dom $\left.(f)\right)$.
(C) The optimal set of problem (P) is nonempty and denoted by X^{*}. The optimal value of the problem is denoted by $F_{\text {opt }}$.
Three prototype examples:

- unconstrained smooth minimization ($g \equiv 0$)

$$
\min \{f(\mathbf{x}): \mathbf{x} \in \mathbb{E}\}
$$

- convex constrained smooth minimization ($g=\delta_{C}, C \neq \emptyset$ closed convex)

$$
\min \{f(\mathbf{x}): \mathbf{x} \in C\}
$$

- I_{1} regularized problems $\left(\mathbb{E}=\mathbb{R}^{n}, g(x) \equiv \lambda\|x\|_{1}\right)$

$$
\min \left\{f(\mathbf{x})+\lambda\|\mathbf{x}\|_{1}: \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

The Idea

Instead of minimizing directly

$$
\min _{\mathbf{x} \in \mathbb{E}} f(\mathbf{x})+g(\mathbf{x})
$$

Approximate f by a regularized linear approximation of f while keeping g fixed.

$$
\begin{gathered}
\mathbf{x}^{k+1}=\underset{\mathbf{x}}{\operatorname{argmin}}\left\{f\left(\mathbf{x}^{k}\right)+\nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)+\frac{1}{2 t_{k}}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|^{2}+g(\mathbf{x})\right\} \\
\mathbf{x}^{k+1}=\underset{\mathbf{x}}{\operatorname{argmin}}\left\{g(\mathbf{x})+\frac{1}{2 t_{k}}\left\|\mathbf{x}-\left(\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)\right)\right\|^{2}\right\}
\end{gathered}
$$

Proximal Gradient Method

$$
\mathbf{x}^{k+1}=\operatorname{prox}_{t_{k} g}\left(\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

Three Prototype Examples Contd.

- Gradient Method ($g=0$, unconstrained minimization)

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

- Gradient Projection Method ($g=\delta_{C}$, constrained convex minimization)

$$
\mathbf{x}^{k+1}=P_{C}\left(\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

- Iterative Soft-Thresholding Algorithm (ISTA) $\left(g=\|\cdot\|_{1}\right)$:

$$
\mathbf{x}^{k+1}=\mathcal{T}_{\lambda t_{k}}\left(\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

where $\mathcal{T}_{\alpha}(\mathbf{u})=[|\mathbf{u}|-\alpha \mathbf{e}] \odot \operatorname{sgn}(\mathbf{u})$.

The Proximal Gradient Method

- We will take the stepsizes as $t_{k}=\frac{1}{L_{k}}$.

The Proximal Gradient Method

Initialization: pick $\mathbf{x}^{0} \in \operatorname{int}(\operatorname{dom}(f))$.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) pick $L_{k}>0$.
(b) set $\mathbf{x}^{k+1}=\operatorname{prox}_{\frac{1}{L_{k}} g}\left(\mathbf{x}^{k}-\frac{1}{L_{k}} \nabla f\left(\mathbf{x}^{k}\right)\right)$.

- The general update step can be written as $\mathbf{x}^{k+1}=T_{L_{k}}^{f, g}\left(\mathbf{x}^{k}\right)$
- $T_{L}^{f, g}: \operatorname{int}(\operatorname{dom}(f)) \rightarrow \mathbb{E}$ is the prox-grad operator defined by

$$
T_{L}^{f, g}(\mathbf{x}) \equiv \operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{x}-\frac{1}{L} \nabla f(\mathbf{x})\right) .
$$

- When the identities of f and g will be clear from the context, we will often omit the superscripts f, g and write $T_{L}(\cdot)$ instead of $T_{L}^{f, g}(\cdot)$.

Sufficient Decrease Lemma

Lemma. Let $F=f+g$ and $T_{L} \equiv T_{L}^{f, g}$. Then for any $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$ and $L \in\left(\frac{L_{f}}{2}, \infty\right)$

$$
\begin{equation*}
F(\mathbf{x})-F\left(T_{L}(\mathbf{x})\right) \geq \frac{L-\frac{L_{f}}{2}}{L^{2}}\left\|G_{L}^{f, g}(\mathbf{x})\right\|^{2} \tag{4}
\end{equation*}
$$

where $G_{L}^{f, g}: \operatorname{int}(\operatorname{dom}(f)) \rightarrow \mathbb{E}$ is the operator defined by $G_{L}^{f, g}(\mathbf{x})=$ $L\left(\mathbf{x}-T_{L}(\mathbf{x})\right)$.

Proof. We use the shorthand notation $\mathbf{x}^{+}=T_{L}(\mathbf{x})$.

- By the descent lemma

$$
\begin{align*}
& \text { it lemma } \tag{5}\\
& f\left(\mathbf{x}^{+}\right) \leq f(\mathbf{x})+\left\langle\nabla f(\mathbf{x}), \mathbf{x}^{+}-\mathbf{x}\right\rangle+\frac{L_{f}}{2}\left\|\mathbf{x}-\mathbf{x}^{+}\right\|^{2} .
\end{align*}
$$

- By the second prox theorem, since $\mathbf{x}^{+}=\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{x}-\frac{1}{L} \nabla f(\mathbf{x})\right)$,

$$
\left\langle\mathbf{x}-\frac{1}{L} \nabla f(\mathbf{x})-\mathbf{x}^{+}, \mathbf{x}-\mathbf{x}^{+}\right\rangle \leq \frac{1}{L} g(\mathbf{x})-\frac{1}{L} g\left(\mathbf{x}^{+}\right) .
$$

- Thus, $\left\langle\nabla f(\mathbf{x}), \mathbf{x}^{+}-\mathbf{x}\right\rangle \leq-L\left\|\mathbf{x}^{+}-\mathbf{x}\right\|^{2}+g(\mathbf{x})-g\left(\mathbf{x}^{+}\right)$,
- which combined with (5) yields

$$
f\left(\mathbf{x}^{+}\right)+g\left(\mathbf{x}^{+}\right) \leq f(\mathbf{x})+g(\mathbf{x})+\left(-L+\frac{L_{f}}{2}\right)\left\|\mathbf{x}^{+}-\mathbf{x}\right\|^{2} .
$$

The Gradient Mapping

- Definition. The gradient mapping is the operator $G_{L}^{f, g}: \operatorname{int}(\operatorname{dom}(f)) \rightarrow \mathbb{E}$ defined by

$$
G_{L}^{f, g}(\mathbf{x}) \equiv L\left(\mathbf{x}-T_{L}^{f, g}(\mathbf{x})\right)
$$

for any $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$.

- When the identities of f and g will be clear from the context, we will use the notation G_{L} instead of $G_{L}^{f, g}$.
In the special case where $L=L_{f}$, the sufficient decrease lemma amounts to
Corollary. For any $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$:

$$
F(\mathbf{x})-F\left(T_{L_{f}}(\mathbf{x})\right) \geq \frac{1}{2 L_{f}}\left\|G_{L_{f}}(\mathbf{x})\right\|^{2}
$$

Properties of the Gradient Mapping I

Recall: under properties (A),(B), the stationary points of the problem

$$
(P) \quad \min \{F(\mathbf{x}) \equiv f(\mathbf{x})+g(\mathbf{x})\}
$$

are the points satisfying $-\nabla f(\mathbf{x}) \in \partial g(\mathbf{x})$. Necessary optimality condition when f is nonconvex, and necessary and sufficient condition if f is convex.

Theorem Let f and g satisfy properties (A) and (B) and let $L>0$. Then
(a) $G_{L}^{f, g_{0}}(\mathbf{x})=\nabla f(\mathbf{x})$ for any $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$, where $g_{0}(\mathbf{x}) \equiv 0$.
(b) For $\mathbf{x}^{*} \in \operatorname{int}(\operatorname{dom}(f)), G_{L}^{f, g}\left(\mathbf{x}^{*}\right)=\mathbf{0}$ iff \mathbf{x}^{*} is a stationary point

Proof.

(a) $G_{L}^{f, g_{0}}(\mathbf{x})=L\left(\mathbf{x}-\operatorname{prox}_{\frac{1}{L} g_{0}}\left(\mathbf{x}-\frac{1}{L} \nabla f(\mathbf{x})\right)\right)=L\left(\mathbf{x}-\left(\mathbf{x}-\frac{1}{L} \nabla f(\mathbf{x})\right)\right)=\nabla f(\mathbf{x})$.
(b) $G_{L}^{f, g}\left(\mathbf{x}^{*}\right)=\mathbf{0}$ iff $\mathbf{x}^{*}=\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{x}^{*}-\frac{1}{L} \nabla f\left(\mathbf{x}^{*}\right)\right)$. By the second prox theorem

$$
\mathbf{x}^{*}-\frac{1}{L} \nabla f\left(\mathbf{x}^{*}\right)-\mathbf{x}^{*} \in \frac{1}{L} \partial g\left(\mathbf{x}^{*}\right),
$$

that is, iff $-\nabla f\left(\mathbf{x}^{*}\right) \in \partial g\left(\mathbf{x}^{*}\right)$.

The Gradient Mapping as an Optimality Measure

Corollary Let f and g satisfy properties (A) and (B) and let $L>0$. Suppose that in addition f is convex. Then for $\mathbf{x}^{*} \in \operatorname{dom}(g), G_{L}^{f, g}\left(\mathbf{x}^{*}\right)=\mathbf{0}$ if and only if \mathbf{x}^{*} is an optimal solution of problem (P).

- $\left\|G_{L}(\mathbf{x})\right\|$ can be regarded as an "optimality measure" in the sense that it is always nonnegative, and equal to zero if and only if \mathbf{x} is a stationary point (or optimal point if f is convex).

Properties of the Gradient Mapping II

- monotonicity w.r.t. the parameter. for any $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$ and $L_{1} \geq L_{2}>0$,

$$
\begin{aligned}
\left\|G_{L_{1}}(\mathbf{x})\right\| & \geq\left\|G_{L_{2}}(\mathbf{x})\right\| \\
\frac{\left\|G_{L_{1}}(\mathbf{x})\right\|}{L_{1}} & \leq \frac{\left\|G_{L_{2}}(\mathbf{x})\right\|}{L_{2}}
\end{aligned}
$$

- Lipschitz continuity. $\left\|G_{L}(\mathbf{x})-G_{L}(\mathbf{y})\right\| \leq\left(2 L+L_{f}\right)\|\mathbf{x}-\mathbf{y}\|$.

If in addition f is convex and L_{f}-smooth (over the entire space)

- $\left\langle G_{L_{f}}(\mathbf{x})-G_{L_{f}}(\mathbf{y}), \mathbf{x}-\mathbf{y}\right\rangle \geq \frac{3}{4 L_{f}}\left\|G_{L_{f}}(\mathbf{x})-G_{L_{f}}(\mathbf{y})\right\|^{2}$
- $\left\|G_{L_{f}}(\mathbf{x})-G_{L_{f}}(\mathbf{y})\right\| \leq \frac{4 L_{f}}{3}\|\mathbf{x}-\mathbf{y}\|$
- Monotonicity w.r.t. the prox-grad mapping: $\left\|G_{L_{f}}\left(T_{L_{f}}(\mathbf{x})\right)\right\| \leq\left\|G_{L_{f}}(\mathbf{x})\right\|$.

Stepsize Strategies

- constant. $L_{k}=\bar{L} \in\left(\frac{L_{f}}{2}, \infty\right)$ for all k.
- backtracking procedure B1. The procedure requires three parameters (s, γ, η) where $s>0, \gamma \in(0,1)$ and $\eta>1$. First, L_{k} is set to be equal to the initial guess s. Then, while

$$
F\left(\mathbf{x}^{k}\right)-F\left(T_{L_{k}}\left(\mathbf{x}^{k}\right)\right)<\frac{\gamma}{L_{k}}\left\|G_{L_{k}}\left(\mathbf{x}^{k}\right)\right\|^{2}
$$

we set $L_{k}:=\eta L_{k}$. That is, L_{k} is chosen as $L_{k}=s \eta^{i_{k}}$, where i_{k} is the smallest nonnegative integer for which the condition

$$
F\left(\mathbf{x}^{k}\right)-F\left(T_{s \eta^{i_{k}}}\left(\mathbf{x}^{k}\right)\right) \geq \frac{\gamma}{s \eta^{i_{k}}}\left\|G_{s \eta^{i_{k}}}\left(\mathbf{x}^{k}\right)\right\|^{2}
$$

is satisfied.

For the backtracking procedure it holds that $L_{k} \leq \max \left\{s, \frac{\eta L_{f}}{2(1-\gamma)}\right\}$.

Sufficient Decrease For Proximal Gradient

Lemma. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by PGM. with either a constant stepsize defined by $L_{k}=\bar{L} \in\left(\frac{L_{f}}{2}, \infty\right)$ or with a stepsize chosen by the backtracking procedure B1. Then

$$
F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq M\left\|G_{d}\left(\mathbf{x}^{k}\right)\right\|^{2},
$$

where

$$
M=\left\{\begin{array}{ll}
\frac{\bar{L}-\frac{L_{f}}{2}}{(\bar{L})^{2}} \gamma & \text { constant stepsize, } \\
\frac{\gamma a x\left\{s, \frac{\eta L_{F}}{2(1-\gamma)}\right\}}{\operatorname{backtracking},}
\end{array} \quad d= \begin{cases}\bar{L}, & \text { constant stepsize }, \\
s, & \text { backtracking. }\end{cases}\right.
$$

Proof. The result for the constant stepsize setting follows by plugging $L=\bar{L}$ and $\mathbf{x}=\mathbf{x}^{k}$ in the sufficient decrease lemma. For the backtracking procedure we have

$$
F\left(\mathrm{x}^{k}\right)-F\left(\mathrm{x}^{k+1}\right) \geq \frac{\gamma}{L_{k}}\left\|G_{L_{k}}\left(\mathrm{x}^{k}\right)\right\|^{2} \geq \frac{\gamma}{\max \left\{s, \frac{\eta L_{f}}{2(1-\gamma)}\right\}}\left\|G_{L_{k}}\left(\mathrm{x}^{k}\right)\right\|^{2} \geq \frac{\gamma}{\max \left\{s, \frac{\eta L_{f}}{2(1-\gamma)}\right\}}\left\|G_{s}\left(\mathrm{x}^{k}\right)\right\|^{2},
$$

Convergence of PGM - the Nonconvex Case

Theorem. Let $\left\{\mathrm{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by PGM with either a constant stepsize defined by $L_{k}=\bar{L} \in\left(\frac{L_{f}}{2}, \infty\right)$ or with a stepsize chosen by the backtracking procedure B1. Then
(a) The sequence $\left\{F\left(x^{k}\right)\right\}_{k \geq 0}$ is nonincreasing. In addition, $F\left(x^{k+1}\right)<F\left(x^{k}\right)$ if and only if x^{k} is not a stationary point of (P).
(b) $G_{d}\left(\mathbf{x}^{k}\right) \rightarrow \mathbf{0}$ as $k \rightarrow \infty$.
(c) $\min _{n=0,1, \ldots, k}\left\|G_{d}\left(\mathbf{x}^{n}\right)\right\| \leq \frac{\sqrt{F\left(\mathbf{x}^{0}\right)-F_{\text {opt }}}}{\sqrt{M(k+1)}}$.
(d) All limit points of the sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ are stationary points of problem (P).

The Fundamental Prox-Grad Inequality

Theorem. For any $\mathbf{x} \in \mathbb{E}$ and $\mathbf{y} \in \operatorname{int}(\operatorname{dom}(f))$ satisfying

$$
\begin{equation*}
f\left(T_{L}(\mathbf{y})\right) \leq f(\mathbf{y})+\left\langle\nabla f(\mathbf{y}), T_{L}(\mathbf{y})-\mathbf{y}\right\rangle+\frac{L}{2}\left\|T_{L}(\mathbf{y})-\mathbf{y}\right\|^{2} \tag{6}
\end{equation*}
$$

it holds that

$$
\begin{equation*}
F(\mathbf{x})-F\left(T_{L}(\mathbf{y})\right) \geq \frac{L}{2}\left\|\mathbf{x}-T_{L}(\mathbf{y})\right\|^{2}-\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}+\ell_{f}(\mathbf{x}, \mathbf{y}) \tag{7}
\end{equation*}
$$

$$
\text { where } \ell_{f}(\mathbf{x}, \mathbf{y})=f(\mathbf{x})-f(\mathbf{y})-\langle\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle
$$

Proof.

- We use the notation $\mathbf{y}^{+}=T_{L}(\mathbf{y})$.
- Since $\mathbf{y}^{+}=\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{y}-\frac{1}{L} \nabla f(\mathbf{y})\right)$, by the second prox theorem it follows that

$$
\frac{1}{L} g(\mathbf{x}) \geq \frac{1}{L} g\left(\mathbf{y}^{+}\right)+\left\langle\mathbf{y}-\frac{1}{L} \nabla f(\mathbf{y})-\mathbf{y}^{+}, \mathbf{x}-\mathbf{y}^{+}\right\rangle
$$

- Therefore,

$$
\begin{align*}
g(\mathbf{x}) \geq & g\left(\mathbf{y}^{+}\right)+L\left\langle\mathbf{y}-\mathbf{y}^{+}, \mathbf{x}-\mathbf{y}^{+}\right\rangle+\left\langle\nabla f(\mathbf{y}), \mathbf{y}^{+}-\mathbf{x}\right\rangle \\
= & g\left(\mathbf{y}^{+}\right)+L\left\langle\mathbf{y}-\mathbf{y}^{+}, \mathbf{x}-\mathbf{y}^{+}\right\rangle \\
& +\left\langle\nabla f(\mathbf{y}), \mathbf{y}^{+}-\mathbf{y}\right\rangle+\langle\nabla f(\mathbf{y}), \mathbf{y}-\mathbf{x}\rangle \tag{8}
\end{align*}
$$

Proof Contd.

- By (6), $f\left(\mathbf{y}^{+}\right) \leq f(\mathbf{y})+\left\langle\nabla f(\mathbf{y}), \mathbf{y}^{+}-\mathbf{y}\right\rangle+\frac{L}{2}\left\|\mathbf{y}^{+}-\mathbf{y}\right\|^{2}$
- Hence, $\left\langle\nabla f(\mathbf{y}), \mathbf{y}^{+}-\mathbf{y}\right\rangle \geq f\left(\mathbf{y}^{+}\right)-f(\mathbf{y})-\frac{L}{2}\left\|\mathbf{y}^{+}-\mathbf{y}\right\|^{2}$,
- which combined with (8) yields

$$
F(\mathbf{x}) \geq F\left(\mathbf{y}^{+}\right)+L\left\langle\mathbf{y}-\mathbf{y}^{+}, \mathbf{x}-\mathbf{y}^{+}\right\rangle-\frac{L}{2}\left\|\mathbf{y}^{+}-\mathbf{y}\right\|^{2}+\ell_{f}(\mathbf{x}, \mathbf{y}) .
$$

- Using the identity $\left\langle\mathbf{y}-\mathbf{y}^{+}, \mathbf{x}-\mathbf{y}^{+}\right\rangle=\frac{1}{2}\left\|\mathbf{x}-\mathbf{y}^{+}\right\|^{2}+\frac{1}{2}\left\|\mathbf{y}-\mathbf{y}^{+}\right\|^{2}-\frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$, we obtain that

$$
F(\mathbf{x})-F\left(\mathbf{y}^{+}\right) \geq \frac{L}{2}\left\|\mathbf{x}-\mathbf{y}^{+}\right\|^{2}-\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}+\ell_{f}(\mathbf{x}, \mathbf{y}),
$$

Sufficient Decrease Lemma - 2nd Version

Corollary. For any $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$ for which

$$
f\left(T_{L}(\mathbf{x})\right) \leq f(\mathbf{x})+\left\langle\nabla f(\mathbf{x}), T_{L}(\mathbf{x})-\mathbf{x}\right\rangle+\frac{L}{2}\left\|T_{L}(\mathbf{x})-\mathbf{x}\right\|^{2}
$$

it holds that

$$
F(\mathbf{x})-F\left(T_{L}(\mathbf{x})\right) \geq \frac{1}{2 L}\left\|G_{L}(\mathbf{x})\right\|^{2}
$$

Stepsize Strategies in the Convex Case

When f is also convex, we will define two possible stepsize strategies for which

$$
f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)+\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}^{k+1}-\mathbf{x}^{k}\right\rangle+\frac{L_{k}}{2}\left\|\mathbf{x}^{k+1}-\mathbf{x}^{k}\right\|^{2} .
$$

- constant. $L_{k}=L_{f}$ for all k.
- backtracking procedure B2. The procedure requires two parameters (s, η), where $s>0$ and $\eta>1$. Define $L_{-1}=s$. At iteration k, L_{k} is set to be equal to L_{k-1}. Then, while

$$
f\left(T_{L_{k}}\left(\mathbf{x}^{k}\right)\right)>f\left(\mathbf{x}^{k}\right)+\left\langle\nabla f\left(\mathbf{x}^{k}\right), T_{L_{k}}\left(\mathbf{x}^{k}\right)-\mathbf{x}^{k}\right\rangle+\frac{L_{k}}{2}\left\|T_{L_{k}}\left(\mathbf{x}^{k}\right)-\mathbf{x}^{k}\right\|^{2},
$$

we set $L_{k}:=\eta L_{k}$. That is, L_{k} is chosen as $L_{k}=L_{k-1} \eta^{i_{k}}$, where i_{k} is the smallest nonnegative integer for which

$$
f\left(T_{L_{k-1} \eta^{k}}\left(\mathbf{x}^{k}\right)\right) \leq f\left(\mathrm{x}^{k}\right)+\left\langle\nabla f\left(\mathrm{x}^{k}\right), T_{L_{k-1} \eta^{i k}}\left(\mathrm{x}^{k}\right)-\mathrm{x}^{k}\right\rangle+\frac{L_{k}}{2}\left\|T_{L_{k-1} \eta^{i k}}\left(\mathrm{x}^{k}\right)-\mathrm{x}^{k}\right\|^{2} .
$$

Remarks

- $\beta L_{f} \leq L_{k} \leq \alpha L_{f}$, where

$$
\alpha=\left\{\begin{array}{ll}
1, & \text { constant, } \\
\max \left\{\eta, \frac{s}{L_{f}}\right\}, & \text { backtracking, }
\end{array} \quad \beta= \begin{cases}1, & \text { constant } \\
\frac{s}{L_{f}}, & \text { backtracking. }\end{cases}\right.
$$

- Monotonicity of PGM. Invoking the sufficient decrease lemma (2nd version) with $\mathbf{x}=\mathbf{x}^{k}$, we obtain that

$$
F\left(\mathrm{x}^{k}\right)-F\left(\mathrm{x}^{k+1}\right) \geq \frac{L_{k}}{2}\left\|\mathrm{x}^{k}-\mathrm{x}^{k+1}\right\|^{2}
$$

or

$$
F\left(\mathrm{x}^{k}\right)-F\left(\mathrm{x}^{k+1}\right) \geq \frac{1}{2 L_{k}}\left\|G_{L_{k}}\left(\mathrm{x}^{k}\right)\right\|^{2} .
$$

$O(1 / k)$ Rate of Convergence of Proximal Gradient

Theorem. Suppose that f is convex. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by the proximal gradient method with either a constant stepsize rule or the backtracking procedure B2. Then for any $\mathbf{x}^{*} \in X^{*}$ and $k \geq 0$,

$$
F\left(\mathbf{x}^{k}\right)-F_{\mathrm{opt}} \leq \frac{\alpha L_{f}\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}}{2 k},
$$

where $\alpha=1$ in the constant stepsize setting and $\alpha=\max \left\{\eta, \frac{s}{L_{f}}\right\}$ if the backtracking rule is employed.

Proof.

- Substituting $L=L_{n}, \mathbf{x}=\mathbf{x}^{*}$ and $\mathbf{y}=\mathbf{x}^{n}$ in the fundamental prox-grad ineq.,

$$
\begin{aligned}
\frac{2}{L_{n}}\left(F\left(\mathbf{x}^{*}\right)-F\left(\mathbf{x}^{n+1}\right)\right) & \geq\left\|\mathbf{x}^{*}-\mathbf{x}^{n+1}\right\|^{2}-\left\|\mathbf{x}^{*}-\mathbf{x}^{n}\right\|^{2}+\frac{2}{L_{n}} \ell_{f}\left(\mathbf{x}^{*}, \mathbf{x}^{n}\right) \\
& \geq\left\|\mathbf{x}^{*}-\mathbf{x}^{n+1}\right\|^{2}-\left\|\mathbf{x}^{*}-\mathbf{x}^{n}\right\|^{2}
\end{aligned}
$$

Proof Contd.

- Summing over $n=0,1, \ldots, k-1$ and using the bound $L_{n} \leq \alpha L_{f}$, we obtain

$$
\frac{2}{\alpha L_{f}} \sum_{n=0}^{k-1}\left(F\left(\mathbf{x}^{*}\right)-F\left(\mathbf{x}^{n+1}\right)\right) \geq\left\|\mathbf{x}^{*}-\mathbf{x}^{k}\right\|^{2}-\left\|\mathbf{x}^{*}-\mathbf{x}^{0}\right\|^{2}
$$

- $\sum_{n=0}^{k-1}\left(F\left(\mathbf{x}^{n+1}\right)-F_{\text {opt }}\right) \leq \frac{\alpha L_{f}}{2}\left\|\mathbf{x}^{*}-\mathbf{x}^{0}\right\|^{2}-\frac{\alpha L_{f}}{2}\left\|\mathbf{x}^{*}-\mathbf{x}^{k}\right\|^{2} \leq \frac{\alpha L_{f}}{2}\left\|\mathbf{x}^{*}-\mathbf{x}^{0}\right\|^{2}$.
- By the monotonicity of $\left\{F\left(x^{n}\right)\right\}_{n \geq 0}$,

$$
k\left(F\left(\mathbf{x}^{k}\right)-F_{\mathrm{opt}}\right) \leq \sum_{n=0}^{k-1}\left(F\left(\mathbf{x}^{n+1}\right)-F_{\mathrm{opt}}\right) \leq \frac{\alpha L_{f}}{2}\left\|\mathbf{x}^{*}-\mathbf{x}^{0}\right\|^{2} .
$$

- Consequently, $F\left(\mathbf{x}^{k}\right)-F_{\text {opt }} \leq \frac{\alpha L_{f}\left\|x^{*}-x^{0}\right\|^{2}}{2 k}$.

Fejér Monotonicity

Theorem. Suppose that f is convex. Let $\left\{\mathbf{x}^{k}\right\}_{k>0}$ be the sequence generated by the proximal gradient method with either a constant stepsize rule or the backtracking procedure B2. Then for any $\mathbf{x}^{*} \in X^{*}$ and $k \geq 0$,

$$
\left\|\mathbf{x}^{k+1}-\mathbf{x}^{*}\right\| \leq\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\| .
$$

Proof.

- Substituting $L=L_{k}, \mathbf{x}=\mathbf{x}^{*}$ and $\mathbf{y}=\mathbf{x}^{k}$ in the fundamental prox-grad inequality (7),

$$
\begin{aligned}
\frac{2}{L_{k}}\left(F\left(\mathbf{x}^{*}\right)-F\left(\mathbf{x}^{k+1}\right)\right) & \geq\left\|\mathbf{x}^{*}-\mathbf{x}^{k+1}\right\|^{2}-\left\|\mathbf{x}^{*}-\mathbf{x}^{k}\right\|^{2}+\frac{2}{L_{k}} \ell_{f}\left(\mathbf{x}^{*}, \mathbf{x}^{k}\right) \\
& \geq\left\|\mathbf{x}^{*}-\mathbf{x}^{k+1}\right\|^{2}-\left\|\mathbf{x}^{*}-\mathbf{x}^{k}\right\|^{2}
\end{aligned}
$$

- The result follows by the inequality $F\left(\mathbf{x}^{*}\right)-F\left(\mathrm{x}^{k+1}\right) \leq 0$.

Fejér Monotonicity - Definition and Main Result

- Definition. A sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0} \subseteq \mathbb{E}$ is called Fejér monotone w.r.t. a set $S \subseteq \mathbb{E}$ if $\left\|\mathbf{x}^{k+1}-\mathbf{y}\right\| \leq\left\|\mathbf{x}^{k}-\mathbf{y}\right\|$ for all $k \geq 0$ and $\mathbf{y} \in S$.

Theorem (convergence of Fejér monotone sequences). Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0} \subseteq \mathbb{E}$ be asequence, and let S be a set satisfying $D \subseteq S$, where D is the set comprising all the limit points of $\left\{x^{k}\right\}_{k \geq 0}$. If $\left\{x^{k}\right\}_{k \geq 0}$ is Fejér monotone w.r.t. S, then it converges to a point in D.

Consequence: convergence of the sequence generated by PGM.
Theorem. Suppose that f is convex. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by PGM with either a constant stepsize rule or the backtracking procedure B2. Then the sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ converges to an optimal solution of problem (P).

Iteration Complexity of Algorithms

- An ε-optimal solution of problem (P) is a vector $\overline{\mathrm{x}} \in \operatorname{dom}(g)$ satisfying $F(\overline{\mathbf{x}})-F_{\mathrm{opt}} \leq \varepsilon$.
- In complexity analysis, the following question is asked: how many iterations are required to obtain an ε-optimal solution? meaning how many iterations are required to obtain the condition $F\left(x^{k}\right)-F_{\text {opt }} \leq \varepsilon$
- Recall: $F\left(\mathbf{x}^{k}\right)-F_{\text {opt }} \leq \frac{\alpha L_{f}\left\|x^{0}-\mathbf{x}^{*}\right\|^{2}}{2 k}$.

Theorem $[O(1 / \varepsilon)$ complexity of PGM]. For any k satisfying

$$
k \geq\left\lceil\frac{\alpha L_{f} R^{2}}{2 \varepsilon}\right\rceil
$$

it holds that $F\left(\mathbf{x}^{k}\right)-F_{\text {opt }} \leq \varepsilon$, where R is an upper bound on $\left\|\mathbf{x}^{*}-\mathbf{x}^{0}\right\|$ for some $\mathbf{x}^{*} \in X^{*}$.
$O(1 / k)$ Rate of Convergence of the Gradient Mapping Norm in the Convex Case

Recall: $\min _{n=0,1, \ldots, k}\left\|G_{d}\left(\mathbf{x}^{n}\right)\right\| \leq \frac{\sqrt{F\left(\mathbf{x}^{0}\right)-F_{\text {opt }}}}{\sqrt{M(k+1)}}$.
We can do better if f is convex:
Theorem. Suppose that f is convex. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by PGM with either a constant stepsize by the backtracking procedure B2. Then for any $\mathbf{x}^{*} \in X^{*}$ and $k \geq 0$,

$$
\min _{n=0,1, \ldots, k}\left\|G_{\alpha L_{f}}\left(\mathbf{x}^{n}\right)\right\| \leq \frac{2 \alpha^{1.5} L_{f}\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|}{\sqrt{\beta}(k+1)} .
$$

where $\alpha=\beta=1$ in the constant stepsize setting and $\alpha=$ $\max \left\{\eta, \frac{s}{L_{f}}\right\}, \beta=\frac{s}{L_{f}}$ if the backtracking rule is employed.
And even better if a constant stepsize is used: $\left\|G_{L_{f}}\left(\mathbf{x}^{k}\right)\right\| \leq \frac{2 L_{f}\left\|x^{0}-x^{*}\right\|}{k+1}$.

Linear Rate of Convergence of PGM - Strongly Convex Case

Theorem. Suppose that f is σ-strongly convex $(\sigma>0)$. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by the proximal gradient method with either a constant stepsize rule or backtracking procedure B2. Let

$$
\alpha= \begin{cases}1, & \text { constant stepsize } \\ \max \left\{\eta, \frac{s}{L_{f}}\right\}, & \text { backtracking }\end{cases}
$$

Then for any $\mathbf{x}^{*} \in X$ and $k \geq 0$,
(a) $\left\|\mathbf{x}^{k+1}-\mathbf{x}^{*}\right\|^{2} \leq\left(1-\frac{\sigma}{\alpha L_{f}}\right)\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|^{2}$.
(b) $\left\|x^{k}-x^{*}\right\|^{2} \leq\left(1-\frac{\sigma}{\alpha L_{f}}\right)^{k}\left\|x^{0}-x^{*}\right\|^{2}$.
(c) $F\left(\mathbf{x}^{k+1}\right)-F_{\mathrm{opt}} \leq \frac{\alpha L_{f}}{2}\left(1-\frac{\sigma}{\alpha L_{f}}\right)^{k+1}\left\|\mathrm{x}^{0}-\mathbf{x}^{*}\right\|^{2}$.

Complexity of PGM - the Strongly Convex Case

A direct result of the rate analysis:
Theorem. For any $k \geq 1$ satisfying

$$
k \geq \alpha \kappa \log \left(\frac{1}{\varepsilon}\right)+\alpha \kappa \log \left(\frac{\alpha L_{f} R^{2}}{2}\right)
$$

it holds that $F\left(\mathbf{x}^{k}\right)-F_{\text {opt }} \leq \varepsilon$, where R is an upper bound on $\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|$ and $\kappa=\frac{L_{f}}{\sigma}$.

Non-Euclidean Spaces

- Until now we assumed that the underlying space is Euclidean, meaning that $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$.
- What is the effect of considering a different norm?
- What is the role of the dual space?
- We will concentrate the simplest example: the gradient method.

The Dual Space

- A linear functional on a vector space \mathbb{E} is a linear transformation from \mathbb{E} to \mathbb{R}.
- The dual space \mathbb{E}^{*} is the set of all linear functionals on \mathbb{E}.
- Fact: For inner product spaces, for any linear functional $f \in \mathbb{E}^{*}$, there exists $\mathbf{v} \in \mathbb{E}$ such that

$$
f(\mathbf{x})=\langle\mathbf{v}, \mathbf{x}\rangle .
$$

- We will make the association $f(\cdot)=\langle\mathbf{v}, \cdot\rangle \in \mathbb{E}^{*} \leftrightarrow \mathbf{v} \in \mathbb{E}$.
- Convention: the elements in \mathbb{E}^{*} are the same as in \mathbb{E}.
- The inner product in \mathbb{E}^{*} is the same as in \mathbb{E}.
- Essentially, the only difference is the norm of the dual space:

$$
\|\mathbf{y}\|_{*} \equiv \max _{\mathbf{x}}\{\langle\mathbf{y}, \mathbf{x}\rangle:\|\mathbf{x}\| \leq 1\}, \quad \mathbf{y} \in \mathbb{E}^{*}
$$

- Alternative representation:

$$
\|\mathbf{y}\|_{*}=\max _{\mathrm{x}}\{\langle\mathbf{y}, \mathbf{x}\rangle:\|\mathbf{x}\|=1\}, \quad \mathbf{y} \in \mathbb{E}^{*} .
$$

- Subgradients and gradients are always in the dual space.

Gradient Method Revisited

- Consider the unconstrained problem

$$
\min \{f(\mathbf{x}): \mathbf{x} \in \mathbb{E}\},
$$

where we assume that f is L_{f}-smooth w.r.t. the underlying norm:

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{*} \leq L_{f}\|\mathbf{x}-\mathbf{y}\|
$$

- The gradient method has the form

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

- A"philosophical" flaw: $\mathbf{x}^{k} \in \mathbb{E}$ while $\nabla f\left(\mathbf{x}^{k}\right) \in \mathbb{E}^{*}$.
- Solution: consider the "primal counterpart" of $\nabla f\left(\mathbf{x}^{k}\right) \in \mathbb{E}^{*}$.

The Primal Counterpart

- Definition. For any vector $\mathbf{a} \in \mathbb{E}^{*}$, the set of primal counterparts of \mathbf{a} is

$$
\Lambda_{\mathbf{a}}=\underset{\mathbf{v} \in \mathbb{E}}{\operatorname{argmax}}\{\langle\mathbf{a}, \mathbf{v}\rangle:\|\mathbf{v}\| \leq 1\} .
$$

Lemma [basic properties of primal counterparts] Let $\mathbf{a} \in \mathbb{E}^{*}$. Then
(a) If $\mathbf{a} \neq \mathbf{0}$, then $\left\|\mathbf{a}^{\dagger}\right\|=1$ for any $\mathbf{a}^{\dagger} \in \Lambda_{\mathbf{a}}$.
(b) If $\mathbf{a}=\mathbf{0}$, then $\Lambda_{\mathbf{a}}=B_{\|\cdot\|}[\mathbf{0}, 1]$.
(c) $\left\langle\mathbf{a}, \mathbf{a}^{\dagger}\right\rangle=\|\mathbf{a}\|_{*}$ for any $\mathbf{a}^{\dagger} \in \Lambda_{\mathbf{a}}$.

Examples: $\mathbb{E}=\mathbb{R}^{n}, \mathbf{a} \neq \mathbf{0}$,

- $\|\cdot\|=\|\cdot\|_{2} \Lambda_{a}=\left\{\frac{a}{\|a\|_{2}}\right\}$.
- $\|\cdot\|=\|\cdot\|_{1}, \Lambda_{\mathbf{a}}=\left\{\sum_{i \in I(\mathbf{a})} \lambda_{i} \operatorname{sgn}\left(a_{i}\right) \mathbf{e}_{i}: \sum_{i \in I(\mathbf{a})} \lambda_{i}=1, \lambda_{j} \geq 0, j \in I(\mathbf{a})\right\}$, where $I(\mathbf{a})=\underset{i=1,2, \ldots, n}{\operatorname{argmax}}\left|a_{i}\right|$.
- $\|\cdot\|=\|\cdot\|_{\infty} . \Lambda_{\mathbf{a}}=\left\{\mathbf{z} \in \mathbb{R}^{n}: z_{i}=\operatorname{sgn}\left(a_{i}\right), i \in I_{\neq}(\mathbf{a}),\left|z_{j}\right| \leq 1, j \in I_{0}(\mathbf{a})\right\}$, where $I_{\neq}(\mathbf{a})=\left\{i \in\{1,2, \ldots, n\}: a_{i} \neq 0\right\}, I_{0}(\mathbf{a})=\left\{i \in\{1,2, \ldots, n\}: a_{i}=0\right\}$.

The Non-Euclidean Gradient Method

The Non-Euclidean Gradient Method

Initialization: pick $\mathbf{x}^{0} \in \mathbb{E}$ arbitrarily.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) pick $\nabla f\left(\mathbf{x}^{k}\right)^{\dagger} \in \Lambda_{\nabla f\left(\mathbf{x}^{k}\right)}$;
(b) set $\mathbf{x}^{k+1}=\mathbf{x}^{k}-\frac{\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{*}}{L_{f}} \nabla f\left(\mathbf{x}^{k}\right)^{\dagger}$.

- Convergence analysis relies on the descent lemma: $f(\mathbf{y}) \leq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{L_{f}}{2}\|\mathbf{x}-\mathbf{y}\|^{2}$.
- Sufficient Decrease: $f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k+1}\right) \geq \frac{1}{2 L_{f}}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{*}^{2}$.
- Proof of sufficient decrease:

$$
\begin{aligned}
f\left(\mathbf{x}^{k+1}\right) & \leq f\left(\mathbf{x}^{k}\right)+\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}^{k+1}-\mathbf{x}^{k}\right\rangle+\frac{L_{f}}{2}\left\|\mathbf{x}^{k+1}-\mathbf{x}^{k}\right\|^{2} \\
& =f\left(\mathbf{x}^{k}\right)-\frac{\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{*}}{L_{f}}\left\langle\nabla f\left(\mathbf{x}^{k}\right), \nabla f\left(\mathbf{x}^{k}\right)^{\dagger}\right\rangle+\frac{\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{*}^{2}}{2 L_{f}^{2}} \\
& =f\left(\mathbf{x}^{k}\right)-\frac{1}{2 L_{f}}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{*}^{2},
\end{aligned}
$$

Convergence in the Nonconvex Case

Theorem. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by the non-Euclidean gradient method. Then
(a) the sequence $\left\{f\left(\mathbf{x}^{k}\right)\right\}_{k \geq 0}$ is nonincreasing. In addition,

$$
f\left(\mathbf{x}^{k+1}\right)<f\left(\mathbf{x}^{k}\right) \text { iff } \nabla f\left(\mathbf{x}^{k}\right) \neq \mathbf{0} ;
$$

(b) if the sequence $\left\{f\left(\mathbf{x}^{k}\right)\right\}_{k \geq 0}$ is bounded below, then $\nabla f\left(\mathbf{x}^{k}\right) \rightarrow \mathbf{0}$ as $k \rightarrow \infty$;
(c) if the optimal value is finite and equal to $f_{\text {opt }}$, then

$$
\min _{n=0,1, \ldots, k}\left\|\nabla f\left(\mathbf{x}^{n}\right)\right\|_{*} \leq \frac{\sqrt{2 L_{f}} \sqrt{f\left(x^{0}\right)-f_{\text {opt }}}}{\sqrt{k+1}} .
$$

(d) all limit points of the sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ are stationary points of f.

Proof. (a),(b) and (d) follow immediately from the sufficient decrease property. (c) follows by summing the sufficient decrease property

$$
\begin{aligned}
f\left(\mathrm{x}^{0}\right)-f_{\mathrm{opt}} & \geq f\left(\mathrm{x}^{0}\right)-f\left(\mathrm{x}^{k+1}\right)=\sum_{n=0}^{k}\left(f\left(\mathrm{x}^{n}\right)-f\left(\mathrm{x}^{n+1}\right)\right) \\
& \geq \frac{1}{2 L_{f}} \sum_{n=0}^{k}\left\|\nabla f\left(\mathrm{x}^{n}\right)\right\|_{*}^{2} \geq \frac{k+1}{2 L_{f}} \min _{n}\left\|\nabla f\left(\mathrm{x}^{n}\right)\right\|_{*}^{2}
\end{aligned}
$$

Convergence in the Convex Case

Assumptions:

- $f: \mathbb{E} \rightarrow \mathbb{R}$ is L_{f}-smooth and convex.
- The optimal set is nonempty and denoted by X^{*}. The optimal value is denoted by f_{opt}.
- There exists $R>0$ s.t. $\max _{\mathbf{x}, \mathbf{x}^{*}}\left\{\left\|\mathbf{x}^{*}-\mathbf{x}\right\|: f(\mathbf{x}) \leq f\left(\mathbf{x}^{0}\right), \mathbf{x}^{*} \in X^{*}\right\} \leq R$.

$$
\text { Lemma. } f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k+1}\right) \geq \frac{1}{2 L_{f} R^{2}}\left(f\left(\mathbf{x}^{k}\right)-f_{\mathrm{opt}}\right)^{2}
$$

Proof.

- By the gradient inequality,

$$
f\left(\mathbf{x}^{k}\right)-f_{\text {opt }}=f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{*}\right) \leq\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}^{k}-\mathbf{x}^{*}\right\rangle \leq\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{*}\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\| \leq R\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{*} .
$$

- Combining the above with sufficient decrease property, $f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k+1}\right) \geq \frac{1}{2 L_{f}}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{*}^{2}$, the result follows.
$O(1 / k)$ rate of convergence of the non-Euclidean gradient method

For any $k \geq 1$,

$$
f\left(x^{k}\right)-f_{\mathrm{opt}} \leq \frac{2 L_{f} R^{2}}{k}
$$

Proof.

- Define $a_{k}=f\left(\mathbf{x}^{k}\right)-f_{\mathrm{opt}}$
- Then by previous lemma,

$$
a_{k}-a_{k+1} \geq \frac{1}{C} a_{k}^{2},
$$

where $C=2 L_{f} R^{2}$.

- We can thus deduce (why?) that $a_{k} \leq \frac{c}{k}$.

Non-Euclidean Gradient under the I_{1}-Norm

- \mathbb{R}^{n} endowed with the I_{1}-norm.
- f be an L_{f}-smooth function w.r.t. the I_{1}-norm.

Non-Euclidean Gradient under the I_{1}-Norm

- Initialization: pick $\mathbf{x}^{0} \in \mathbb{R}^{n}$.
- General step: for any $k=0,1,2, \ldots$ execute the following steps:
- set $i_{k} \in \underset{i}{\operatorname{argmax}}\left|\frac{\partial f\left(\mathbf{x}^{k}\right)}{\partial x_{i}}\right|$;
$-\mathbf{x}^{k+1}=\mathbf{x}^{k}-\frac{\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\| \infty}{L_{f}} \operatorname{sgn}\left(\frac{\partial f\left(\mathbf{x}^{k}\right)}{\partial x_{i_{k}}}\right) \mathbf{e}_{i_{k}}$.

Coordinate descent-type method

Example

Consider the problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}\right\}
$$

- $\mathbf{A} \in \mathbb{S}_{++}^{n}$ and $\mathbf{b} \in \mathbb{R}^{n}$.
- The underlying space is $\mathbb{E}=\mathbb{R}^{n}$ endowed with the I_{p}-norm $(p \in[1, \infty])$.
- f is $L_{f}^{(p)}$-smooth with

$$
L_{f}^{(p)}=\|\mathbf{A}\|_{p, q}=\max _{\mathbf{x}}\left\{\|\mathbf{A} \mathbf{x}\|_{q}:\|\mathbf{x}\|_{p} \leq 1\right\}
$$

with $q \in[1, \infty]$ satisfying $\frac{1}{p}+\frac{1}{q}=1$.
Two settings:

- $p=2$. In this case, since \mathbf{A} is positive definite, $L_{f}^{(2)}=\|\mathbf{A}\|_{2,2}=\lambda_{\max }(\mathbf{A})$.
- $p=1$. Here $L_{f}^{(1)}=\|\mathbf{A}\|_{1, \infty}=\max _{i, j}\left|A_{i, j}\right|$.

Two Algorithms

Euclidean ($p=2$):

Algorithm G2

- Initialization: pick $\mathbf{x}^{0} \in \mathbb{R}^{n}$.
- General step $(k \geq 0): \boldsymbol{x}^{k+1}=\mathbf{x}^{k}-\frac{1}{L_{f}^{(2)}}\left(\mathbf{A} \mathbf{x}^{k}+\mathbf{b}\right)$.

Non-Euclidean ($p=1$)

Algorithm G1

- Initialization: pick $\mathbf{x}^{0} \in \mathbb{R}^{n}$.
- General step ($k \geq 0$):
- pick $i_{k} \in \underset{i=1,2, \ldots, n}{\operatorname{argmax}}\left|\mathbf{A}_{i} \mathrm{x}^{k}+b_{i}\right|$, where \mathbf{A}_{i} denotes i th row of \mathbf{A}.
- update $\mathbf{x}_{j}^{k+1}= \begin{cases}\mathbf{x}_{j}^{k}, & j \neq i_{k}, \\ \mathbf{x}_{i_{k}}^{k}-\frac{1}{L_{f}^{(1)}}\left(\mathbf{A}_{i_{k}} \mathbf{x}^{k}+b_{i_{k}}\right), & j=i_{k} .\end{cases}$
- Algorithm G2 requires $O\left(n^{2}\right)$ operations per iteration, while algorithm G1 requires only $O(n)$.

Example Contd.

- Set $\mathbf{A}=\mathbf{J}+2 \mathbf{I}$, where \mathbf{J} is the matrix of all-ones.
- \mathbf{A} is positive definite and $\lambda_{\max }(\mathbf{A})=2+n, \max _{i, j}\left|A_{i, j}\right|=3$.
- Therefore, as $\rho_{f} \equiv \frac{L_{f}^{(2)}}{L_{f}^{(1)}}=\frac{n+2}{3}$ gets larger, the Euclidean gradient method (Algorithm G2) should become more inferior to the non-Euclidean version (Algorithm G1).

Numerical Example:

- $\mathbf{b}=10 \mathbf{e}_{1}, \mathbf{x}^{0}=\mathbf{e}_{n}$.
- $n=10 / 100\left(\rho_{f}=4 / 34\right)$
- We count both iterations and "meta iterations" of G1.

$n=100$

Fast Proximal Gradient

- A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. (2009).
- A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal-recovery problems, In Convex optimization in signal processing and communications (2010)
- Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program. (2013)

FISTA (Fast Proximal Gradient Method)

- The model:

$$
(P) \min _{\mathbf{x} \in \mathbb{E}} f(\mathbf{x})+g(\mathbf{x})
$$

- Underlying Assumptions:
(A) $g: \mathbb{E} \rightarrow(-\infty, \infty]$ is proper closed and convex.
(B) $f: \mathbb{E} \rightarrow \mathbb{R}$ is L_{f}-smooth and convex.
(C) The optimal set of (P) is nonempty and denoted by X^{*}. The optimal value of the problem is denoted by F_{opt}.
- The Idea: instead of making a step of the form

$$
\mathbf{x}^{k+1}=\operatorname{prox}_{\frac{1}{L_{k}} g}\left(\mathbf{x}^{k}-\frac{1}{L_{k}} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

we will consider a step of the form

$$
\mathbf{x}^{k+1}=\operatorname{prox}_{\frac{1}{L_{k}} g}\left(\mathbf{y}^{k}-\frac{1}{L_{k}} \nabla f\left(\mathbf{y}^{k}\right)\right)
$$

where \mathbf{y}^{k} is a special linear combination of $\mathbf{x}^{k}, \mathbf{x}^{k-1}$

FISTA

FISTA

Input: $\left(f, g, \mathbf{x}^{0}\right)$, where f and g satisfy properties (A) and (B) and $\mathbf{x}^{0} \in \mathbb{E}$. Initialization: set $\mathbf{y}^{0}=\mathbf{x}^{0}$ and $t_{0}=1$.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) pick $L_{k}>0$.
(b) set $\mathbf{x}^{k+1}=\operatorname{prox}_{\frac{1}{L_{k}} g}\left(\mathbf{y}^{k}-\frac{1}{L_{k}} \nabla f\left(\mathbf{y}^{k}\right)\right)$.
(c) set $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$.
(d) compute $\mathbf{y}^{k+1}=\mathbf{x}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)$.

- The dominant computational steps of the proximal gradient and FISTA methods are the same: one proximal computation and one gradient evaluation.

Stepsize Rules

- constant. $L_{k}=L_{f}$ for all k.
- backtracking procedure B3. The procedure requires two parameters (s, η), where $s>0$ and $\eta>1$. Define $L_{-1}=s$. At iteration k, L_{k} is set to be equal to L_{k-1}. Then, while

$$
f\left(T_{L_{k}}\left(\mathbf{y}^{k}\right)\right)>f\left(\mathbf{y}^{k}\right)+\left\langle\nabla f\left(\mathbf{y}^{k}\right), T_{L_{k}}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right\rangle+\frac{L_{k}}{2}\left\|T_{L_{k}}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right\|^{2}
$$

we set $L_{k}:=\eta L_{k}$. In other words, the stepsize is chosen as $L_{k}=L_{k-1} \eta^{i_{k}}$, where i_{k} is the smallest nonnegative integer for which

$$
\begin{aligned}
& f\left(T_{L_{k-1} \eta^{j_{k}}}\left(\mathbf{y}^{k}\right)\right) \leq f\left(\mathbf{y}^{k}\right)+\left\langle\nabla f\left(\mathbf{y}^{k}\right), T_{L_{k-1} \eta^{k}}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right\rangle+ \\
& \frac{L_{k}}{2}\left\|T_{L_{k-1} \eta^{k}}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right\|^{2} .
\end{aligned}
$$

In both stepsize rules,

$$
f\left(T_{L_{k}}\left(\mathbf{y}^{k}\right)\right) \leq f\left(\mathbf{y}^{k}\right)+\left\langle\nabla f\left(\mathbf{y}^{k}\right), T_{L_{k}}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right\rangle+\frac{L_{k}}{2}\left\|T_{L_{k}}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right\|^{2}
$$

Remarks

- $\beta L_{f} \leq L_{k} \leq \alpha L_{f}$, where

$$
\alpha=\left\{\begin{array}{ll}
1, & \text { constant }, \\
\max \left\{\eta, \frac{s}{L_{f}}\right\}, & \text { backtracking },
\end{array} \quad \beta= \begin{cases}1, & \text { constant }, \\
\frac{s}{L_{f}}, & \text { backtracking. }\end{cases}\right.
$$

- Easy to show by induction that $t_{k} \geq \frac{k+2}{2}$ for all $k \geq 0$.

$O\left(1 / k^{2}\right)$ rate of convergence of FISTA

Theorem. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by FISTA with either a constant stepsize rule or the backtracking procedure B3. Then for any $\mathbf{x}^{*} \in X^{*}$ and $k \geq 1$,

$$
F\left(\mathbf{x}^{k}\right)-F_{\mathrm{opt}} \leq \frac{2 \alpha L_{f}\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}}{(k+1)^{2}}
$$

where $\alpha=1$ in the constant stepsize setting and $\alpha=\max \left\{\eta, \frac{s}{L_{f}}\right\}$ if the backtracking rule is employed.

Proof heavily based on the fundamental proximal gradient inequality.

Alternative Choice for t_{k}

- For the proof of the $O\left(1 / k^{2}\right)$ rate, it is enough to require that $\left\{t_{k}\right\}_{k \geq 0}$ will satisfy
(a) $t_{k} \geq \frac{k+2}{2}$;
(b) $t_{k+1}^{2}-t_{k+1} \leq t_{k}^{2}$.
- The choice $t_{k}=\frac{k+2}{2}$ also satisfies these two properties. (a) is obvious. (b) holds since

$$
\begin{aligned}
t_{k+1}^{2}-t_{k+1} & =t_{k+1}\left(t_{k+1}-1\right)=\frac{k+3}{2} \cdot \frac{k+1}{2}=\frac{k^{2}+4 k+3}{4} \\
& \leq \frac{k^{2}+4 k+4}{4}=\frac{(k+2)^{2}}{4}=t_{k}^{2} .
\end{aligned}
$$

ISTA/FISTA

Consider the model

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})+\lambda\|\mathbf{x}\|_{1},
$$

- $\lambda>0$
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex and L_{f}-smooth.

Iterative Shrinkage/Thresholding Algorithm (ISTA):

$$
\mathbf{x}^{k+1}=\mathcal{T}_{\lambda / L_{f}}\left(\mathbf{x}^{k}-\frac{1}{L_{f}} \nabla f\left(\mathbf{x}^{k}\right)\right) .
$$

Fast Iterative Shrinkage/Thresholding Algorithm (ISTA):
(a) $\mathbf{x}^{k+1}=\mathcal{T}_{\frac{\lambda}{L_{f}}}\left(\mathbf{y}^{k}-\frac{1}{L_{f}} \nabla f\left(\mathbf{y}^{k}\right)\right)$.
(b) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$.
(c) $\mathbf{y}^{k+1}=\mathbf{x}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)$.

I_{1}-Regularized Least Squares

Consider the problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}
$$

- $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$ and $\lambda>0$.
- Fits (P) with $f(\mathbf{x})=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}$ and $g(\mathbf{x})=\lambda\|\mathbf{x}\|_{1}$.
- f is L_{f}-smooth with $L_{f}=\left\|\mathbf{A}^{T} \mathbf{A}\right\|_{2,2}=\lambda_{\max }\left(\mathbf{A}^{T} \mathbf{A}\right)$.

$$
\text { ISTA: } \mathbf{x}^{k+1}=\mathcal{T}_{\frac{\lambda}{L_{k}}}\left(\mathbf{x}^{k}-\frac{1}{L_{k}} \mathbf{A}^{T}\left(\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right)\right) .
$$

FISTA:

(a) $\mathbf{x}^{k+1}=\mathcal{T}_{\frac{\lambda}{L_{k}}}\left(\mathbf{y}^{k}-\frac{1}{L_{k}} \mathbf{A}^{T}\left(\mathbf{A} \mathbf{y}^{k}-\mathbf{b}\right)\right)$.
(b) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$.
(c) $\mathbf{y}^{k+1}=\mathbf{x}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)$.

Numerical Example I

- test on regularized I_{1}-regularized least squares.
- $\lambda=1$.
- $\mathbf{A} \in \mathbb{R}^{100 \times 110}$. The components of \mathbf{A} were independently generated using a standard normal distribution.
- the "true" vector is $\mathbf{x}_{\text {true }}=\mathbf{e}_{3}-\mathbf{e}_{7}$.
- $\mathbf{b}=\mathbf{A} \mathbf{x}_{\text {true }}$.
- ran 200 iterations of ISTA and FISTA with $\mathbf{x}^{0}=\mathbf{e}$.

Function Values

Solutions

Example 2: Wavelet-Based Image Deblurring

$$
\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\lambda\|\mathbf{x}\|_{1}
$$

- image of size 512×512
- matrix \mathbf{A} is dense (Gaussian blurring times inverse of two-stage Haar wavelet transform).
- all problems solved with fixed λ and Gaussian noise.

Deblurring of the Cameraman

original

blurred and noisy

1000 Iterations of ISTA versus 200 of FISTA

ISTA: 1000 Iterations

FISTA: 200 Iterations

Original Versus Deblurring via FISTA

Original

FISTA:1000 Iterations

Function Values errors $F\left(\mathbf{x}^{k}\right)-F\left(\mathbf{x}^{*}\right)$

Weighted FISTA

- $\mathbb{E}=\mathbb{R}^{n}$
- The underlying assumption is that \mathbb{E} is Euclidean.
- Assume that the endowed inner product is the \mathbf{Q}-inner product:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{Q} \mathbf{y},
$$

where $\mathbf{Q} \in \mathbb{S}_{++}^{n}$.

- $\nabla f(\mathbf{x})=\mathbf{Q}^{-1} D_{f}(\mathbf{x})$, where

$$
D_{f}(\mathbf{x})=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(\mathbf{x}) \\
\frac{\partial f}{\partial x_{2}}(\mathbf{x}) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(\mathbf{x})
\end{array}\right) .
$$

- L_{f}^{Q} (Lipschitz constant of f w.r.t. the \mathbf{Q}-norm):

$$
\left\|\mathbf{Q}^{-1} D_{f}(\mathbf{x})-\mathbf{Q}^{-1} D_{f}(\mathbf{y})\right\|_{\mathbf{Q}} \leq L_{f}^{\mathbf{Q}}\|\mathbf{x}-\mathbf{y}\|_{\mathbf{Q}} \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

Weighted FISTA

The general update rule for FISTA in this case will have the form
(a) $\mathbf{x}^{k+1}=\operatorname{prox}_{\frac{1}{L_{f}^{Q}} g}\left(\mathbf{y}^{k}-\frac{1}{L_{f}} \mathbf{Q}^{-1} D_{f}\left(\mathbf{y}^{k}\right)\right)$.
(b) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$.
(c) $\mathbf{y}^{k+1}=\mathbf{x}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)$.

The prox operator in step (a) is computed in terms of the \mathbf{Q}-norm:

$$
\operatorname{prox}_{h}(\mathbf{x})=\underset{\mathbf{u} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{h(\mathbf{u})+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|_{\mathbf{Q}}^{2}\right\}
$$

The convergence result will also be written in term of the \mathbf{Q}-norm

$$
F\left(\mathbf{x}^{k}\right)-F_{\mathrm{opt}} \leq \frac{2 \alpha L_{f}^{\mathbf{Q}}\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|_{\mathbf{Q}}^{2}}{(k+1)^{2}} .
$$

Restarting FISTA in the Strongly Convex Case

- Assume that f is σ-strongly convex for some $\sigma>0$.
- The proximal gradient method attains an ε-optimal solution after an order of $O\left(\kappa \log \left(\frac{1}{\varepsilon}\right)\right)$ iterations $\left(\kappa=\frac{L_{f}}{\sigma}\right)$.
- A natural question is how the complexity result improves when using FISTA.
- Done by incorporating a restarting mechanism to FISTA - improves complexity result to $O\left(\sqrt{\kappa} \log \left(\frac{1}{\varepsilon}\right)\right)$

Restarted FISTA

Initialization: pick $\mathbf{z}^{-1} \in \mathbb{E}$ and a positive integer N. Set $\mathbf{z}^{0}=T_{L_{f}}\left(\mathbf{z}^{-1}\right)$.
General step $(k \geq 0)$

- run N iterations of FISTA with constant stepsize $\left(L_{k} \equiv L_{f}\right)$ and input $\left(f, g, \mathbf{z}^{k}\right)$ and obtain a sequence $\left\{\mathbf{x}^{n}\right\}_{n=0}^{N}$;
- set $\mathbf{z}^{k+1}=\mathbf{x}^{N}$.

Restarted FISTA

Theorem $\left[O\left(\sqrt{\kappa} \log \left(\frac{1}{\varepsilon}\right)\right)\right.$ complexity of restarted FISTA] Suppose that that f is σ-strongly convex $(\sigma>0)$. Let $\left\{\mathbf{z}^{k}\right\}_{k \geq 0}$ be the sequence generated by the restarted FISTA method employed with $N=\lceil\sqrt{8 \kappa}-1\rceil$. Let R be an upper bound on $\left\|\mathbf{z}^{-1}-\mathbf{x}^{*}\right\|$. Then
(a) $F\left(z^{k}\right)-F_{\text {opt }} \leq \frac{L_{f} R^{2}}{2}\left(\frac{1}{2}\right)^{k}$;
(b) after k iterations of FISTA with k satisfying

$$
k \geq \sqrt{8 \kappa}\left(\frac{\log \left(\frac{1}{\varepsilon}\right)}{\log (2)}+\frac{\log \left(L_{f} R^{2}\right)}{\log (2)}\right)
$$

an ε-optimal solution is obtained at the end of last completed cycle:

$$
F\left(\mathbf{z}^{\left\lfloor\frac{\kappa}{N}\right\rfloor}\right)-F_{\mathrm{opt}} \leq \varepsilon .
$$

Smoothing

- A. Beck and M. Teboulle, Smoothing and first order methods: a unified framework. SIAM J. Optim. (2012)
- Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. (2005)

Smoothing

- It is known that in general smooth convex optimization problems can be solved with complexity $O\left(1 / \varepsilon^{2}\right)$
- FISTA requires $O(1 / \sqrt{\varepsilon})$ to obtain an ε-optimal solution of the composite model $f+g$.
- We will show how FISTA can be used to devise a method for more general nonsmooth convex problems in an improved complexity of $O(1 / \varepsilon)$.

The model under consideration is

$$
(P) \quad \min \{f(\mathbf{x})+h(\mathbf{x})+g(\mathbf{x}): \mathbf{x} \in \mathbb{E}\} .
$$

- $f L_{f}$-smooth and convex;
- g proper closed and convex and "proximable";
- h real-valued and convex (but not "proximable")

The Idea

$$
(P) \quad \min \{f(\mathbf{x})+h(\mathbf{x})+g(\mathbf{x}): \mathbf{x} \in \mathbb{E}\}
$$

- Solving (P) with FISTA with smooth/nosmooth parts $(f, g+h)$ is not practical.
- The idea will be to find a smooth approximation of h, say \tilde{h} and solve the problem via FISTA with smooth and nonsmooth parts taken as $(f+\tilde{h}, g)$.
- This simple idea will be the basis for the improved $O(1 / \varepsilon)$ complexity.
- Need to study in more details the notions of smooth approximations and smoothability.

Smooth Approximations and Smoothability

- Definition. A convex function $h: \mathbb{E} \rightarrow \mathbb{R}$ is called (α, β)-smoothable $(\alpha, \beta>0)$ if for any $\mu>0$ there exists a convex differentiable function $h_{\mu}: \mathbb{E} \rightarrow \mathbb{R}$ such that
(a) $h_{\mu}(\mathbf{x}) \leq h(\mathbf{x}) \leq h_{\mu}(\mathbf{x})+\beta \mu$ for all $\mathbf{x} \in \mathbb{E}$.
(b) h_{μ} is $\frac{\alpha}{\mu}$-smooth.
- The function h_{μ} is called a $\frac{1}{\mu}$-smooth approximation of h with parameters (α, β).

Examples:

- $h(\mathbf{x})=\|\mathbf{x}\|_{2}\left(\mathbb{E}=\mathbb{R}^{n}\right)$. For any $\mu>0, h_{\mu}(\mathbf{x}) \equiv \sqrt{\|\mathbf{x}\|_{2}^{2}+\mu^{2}}-\mu$ is a $\frac{1}{\mu}$-smooth approximation of h with parameters $(1,1) \Rightarrow h$ is (1,1)-smoothable.
- $h(\mathbf{x})=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\left(\mathbb{E}=\mathbb{R}^{n}\right)$. For any $\mu>0$, $h_{\mu}(\mathbf{x})=\mu \log \left(\sum_{i=1}^{n} e^{x_{i} / \mu}\right)-\mu \log n$ is a smooth approximation of h with parameters $(1, \log n) \Rightarrow h$ is $(1, \log n)$-smoothable.

Calculus of Smooth Approximations

Theorem.

(a) Let $h^{1}, h^{2}: \mathbb{E} \rightarrow \mathbb{R}$ be convex functions and let γ_{1}, γ_{2} be nonnegative numbers. Suppose that for a given $\mu>0, h_{\mu}^{i}$ is a $\frac{1}{\mu}$-smooth approximation of h^{i} with parameters $\left(\alpha_{i}, \beta_{i}\right)$ for $i=1,2$, then $\gamma_{1} h_{\mu}^{1}+\gamma_{2} h_{\mu}^{2}$ is a $\frac{1}{\mu}$-smooth approximation of $\gamma_{1} h^{1}+\gamma_{2} h^{2}$ with parameters $\left(\gamma_{1} \alpha_{1}+\gamma_{2} \alpha_{2}, \gamma_{1} \beta_{1}+\gamma_{2} \beta_{2}\right)$.
(b) Let $\mathcal{A}: \mathbb{E} \rightarrow \mathbb{V}$ be a linear transformation between the Euclidean spaces \mathbb{E} and \mathbb{V}. Let $h: \mathbb{V} \rightarrow \mathbb{R}$ be a convex function and define

$$
q(\mathbf{x}) \equiv h(\mathcal{A}(\mathbf{x})+\mathbf{b}),
$$

where $\mathbf{b} \in \mathbb{V}$. Suppose that for a given $\mu>0, h_{\mu}$ is a $\frac{1}{\mu}$-smooth approximation of h with parameters (α, β). Then the function $q_{\mu}(\mathbf{x}) \equiv h_{\mu}(\mathcal{A}(\mathbf{x})+\mathbf{b})$ is a $\frac{1}{\mu}$-smooth approximation of q with parameters $\left(\alpha\|\mathcal{A}\|^{2}, \beta\right)$.

Proof: very easy...

Operations Preserving Smoothability

Corollary.

(a) Let $h^{1}, h^{2}: \mathbb{E} \rightarrow \mathbb{R}$ be convex functions which are $\left(\alpha_{1}, \beta_{1}\right)$ - and (α_{2}, β_{2})-smoothable respectively, and let γ_{1}, γ_{2} be nonnegative numbers. Then $\gamma_{1} h^{1}+\gamma_{2} h^{2}$ is a $\left(\gamma_{1} \alpha_{1}+\gamma_{2} \alpha_{2}, \gamma_{1} \beta_{1}+\gamma_{2} \beta_{2}\right)$-smoothable function.
(b) Let $\mathcal{A}: \mathbb{E} \rightarrow \mathbb{V}$ be a linear transformation between the Euclidean spaces \mathbb{E} and \mathbb{V}. Let $h: \mathbb{V} \rightarrow \mathbb{R}$ be a convex (α, β)-smoothable function and define

$$
q(\mathbf{x}) \equiv g(\mathcal{A}(\mathbf{x})+\mathbf{b}),
$$

where $\mathbf{b} \in \mathbb{V}$. Then \boldsymbol{q} is an $\left(\alpha\|\mathcal{A}\|^{2}, \beta\right)$-smoothable function.

Smooth Approximation of Piecewise Affine Functions

- Let $q(\mathbf{x})=\max _{i=1, \ldots, m}\left\{\mathbf{a}_{i}^{T} \mathbf{x}+b_{i}\right\}$, where $\mathbf{a}_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$ for any $i=1,2, \ldots, m$.
- $q(\mathbf{x})=g(\mathbf{A} \mathbf{x}+\mathbf{b})$, where $g(\mathbf{y})=\max \left\{y_{1}, y_{2}, \ldots, y_{m}\right\}, \mathbf{A}$ is the matrix whose rows are $\mathbf{a}_{1}^{T}, \mathbf{a}_{2}^{T}, \ldots, \mathbf{a}_{m}^{T}$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)^{T}$.
- Let $\mu>0 . g_{\mu}(\mathbf{y})=\mu \log \left(\sum_{i=1}^{m} e^{y_{i} / \mu}\right)-\mu \log m$ is a $\frac{1}{\mu}$-smooth approximation of g with parameters $(1, \log m)$.
- Therefore,

$$
q_{\mu}(\mathbf{x}) \equiv g_{\mu}(\mathbf{A} \mathbf{x}+\mathbf{b})=\mu \log \left(\sum_{i=1}^{m} e^{\left(\mathbf{a}_{i}^{T} \mathbf{x}+b_{i}\right) / \mu}\right)-\mu \log m
$$

is a $\frac{1}{\mu}$-smooth approximation of q with parameters $\left(\|\mathbf{A}\|_{2,2}^{2}, \log m\right)$.

The Moreau Envelope

Definition. Given a proper closed convex function $f: \mathbb{E} \rightarrow(-\infty, \infty]$, and $\mu>0$, the Moreau envelope of f is the function

$$
M_{f}^{\mu}(\mathbf{x})=\min _{\mathbf{u} \in \mathbb{E}}\left\{f(\mathbf{u})+\frac{1}{2 \mu}\|\mathbf{x}-\mathbf{u}\|^{2}\right\} .
$$

- The parameter μ is called the smoothing parameter.
- By the first prox theorem the minimization problem defining the Moreau envelope has a unique solution, given by $\operatorname{prox}_{\mu f}(\mathbf{x})$. Therefore,

$$
M_{f}^{\mu}(\mathbf{x})=f\left(\operatorname{prox}_{\mu f}(\mathbf{x})\right)+\frac{1}{2 \mu}\left\|\mathbf{x}-\operatorname{prox}_{\mu f}(\mathbf{x})\right\|^{2}
$$

Examples

- Indicators. Suppose that $f=\delta_{C}$, where $C \subseteq \mathbb{E}$ is a nonempty closed and convex set. Then $\operatorname{prox}_{f}=P_{C}$ and

$$
\left.M_{f}^{\mu}(\mathbf{x})=\delta_{C}\left(P_{C}(\mathbf{x})\right)+\frac{1}{2 \mu} \| \mathbf{x}-P_{C}(\mathbf{x})\right) \|^{2}
$$

Therefore,

$$
M_{\delta_{C}}^{\mu}=\frac{1}{2 \mu} d_{C}^{2}
$$

- Euclidean Norms $f(\mathbf{x})=\|\mathbf{x}\|$. Then for any $\mu>0$ and $\mathbf{x} \in \mathbb{E}$,

$$
\operatorname{prox}_{\mu f}(\mathbf{x})=\left(1-\frac{\mu}{\max \{\|\mathbf{x}\|, \mu\}}\right) \mathbf{x}
$$

Therefore,

$$
M_{f}^{\mu}(\mathbf{x})=\left\|\operatorname{prox}_{\mu f}(\mathbf{x})\right\|+\frac{1}{2 \mu}\left\|\mathbf{x}-\operatorname{prox}_{\mu f}(\mathbf{x})\right\|^{2}=\underbrace{\left\{\begin{array}{cc}
\frac{1}{2 \mu}\|\mathbf{x}\|^{2}, & \|\mathbf{x}\| \leq \mu, \\
\|\mathbf{x}\|-\frac{\mu}{2}, & \|\mathbf{x}\|>\mu,
\end{array}\right.}_{H_{\mu}(\mathbf{x})}
$$

H_{μ} - Huber function

Huber Function

H_{μ} gets smoother as μ increases.

Smoothability of the Moreau Envelope

Theorem. Let $f: \mathbb{E} \rightarrow(-\infty, \infty]$ be a proper closed and convex function. Let $\mu>0$. Then M_{f}^{μ} is $\frac{1}{\mu}$-smooth over \mathbb{E} and

$$
\nabla M_{f}^{\mu}(\mathbf{x})=\frac{1}{\mu}\left(\mathbf{x}-\operatorname{prox}_{\mu f}(\mathbf{x})\right) .
$$

Examples:

- (smoothability of the squared distance) Let $C \subseteq \mathbb{E}$ be a nonempty closed and convex set. Recall that $\frac{1}{2} d_{C}^{2}=M_{\delta_{C}}^{1}$. Then $\frac{1}{2} d_{C}^{2}$ is 1 -smooth and

$$
\nabla\left(1 / 2 d_{C}^{2}\right)(\mathbf{x})=\mathbf{x}-\operatorname{prox}_{\delta_{C}}(\mathbf{x})=\mathbf{x}-P_{C}(\mathbf{x}) .
$$

- (smoothability of Huber) $H_{\mu}=M_{f}^{\mu}$, where $f(\mathbf{x})=\|\mathbf{x}\|$. Then H_{μ} is $\frac{1}{\mu}$-smooth and

$$
\begin{aligned}
\nabla H_{\mu}(\mathbf{x}) & =\frac{1}{\mu}\left(\mathbf{x}-\operatorname{prox}_{\mu f}(\mathbf{x})\right)=\frac{1}{\mu}\left(\mathbf{x}-\left(1-\frac{\mu}{\max \{\|\mathbf{x}\|, \mu\}}\right) \mathbf{x}\right) \\
& =\left\{\begin{array}{cc}
\frac{1}{\mu} \mathbf{x}, & \|\mathbf{x}\| \leq \mu \\
\frac{\mathbf{x}}{\|\mathbf{x}\|}, & \|\mathbf{x}\|>\mu \\
\text { Amir Beck }
\end{array}\right.
\end{aligned}
$$

Smoothability of Lipschitz Convex Functions

Theorem. Let $h: \mathbb{E} \rightarrow \mathbb{R}$ be a convex function satisfying

$$
|h(\mathbf{x})-h(\mathbf{y})| \leq \ell_{h}\|\mathbf{x}-\mathbf{y}\| \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{E} .
$$

Then $\mu>0 M_{h}^{\mu}$ is a $\frac{1}{\mu}$-smooth approximation of h with parameters $\left(1, \frac{\ell_{h}^{2}}{2}\right)$.
Corollary. Let $h: \mathbb{E} \rightarrow \mathbb{R}$ be convex and Lipschitz with constant ℓ_{h}. Then h is ($1, \frac{\ell_{h}^{2}}{2}$)-smoothable.

Examples:

- (smooth approximation of the l_{2}-norm) Let $h(\mathbf{x})=\|\mathbf{x}\|_{2}\left(\right.$ over $\left.\mathbb{R}^{n}\right)$. Then h is convex and Lipschitz with constant $\ell_{h}=1$. Therefore,

$$
M_{h}^{\mu}(\mathbf{x})=H_{\mu}(\mathbf{x})= \begin{cases}\frac{1}{2 \mu}\|\mathbf{x}\|_{2}^{2}, & \|\mathbf{x}\|_{2} \leq \mu \\ \|\mathbf{x}\|_{2}-\frac{\mu}{2}, & \|\mathbf{x}\|_{2}>\mu\end{cases}
$$

is a $\frac{1}{\mu}$-smooth approximation of h with parameters $\left(1, \frac{1}{2}\right)$.

- (smooth approximation of the I_{1}-norm) Let $h(\mathbf{x})=\|\mathbf{x}\|_{1}$ Then h is convex and Lipschitz with constant $\ell_{h}=\sqrt{n}$. Hence, $M_{h}^{\mu}(\mathbf{x})=\sum_{i=1}^{n} H_{\mu}\left(x_{i}\right)$ is a $\frac{1}{\mu}$-smooth approximation of h with parameters $\left(1, \frac{\eta}{2}\right)$.

Smooth Approximations of the Absolute Value Function

Three possible smooth approximations of $h(x)=|x|$

- $h_{\mu}^{1}(x)=\sqrt{x^{2}+\mu^{2}}-\mu,(\alpha, \beta)=(1,1)$.
- $h_{\mu}^{2}(x)=\mu \log \left(e^{x / \mu}+e^{-x / \mu}\right)-\mu \log 2,(\alpha, \beta)=(1, \log 2)$.
- $h_{\mu}^{3}(x)=H_{\mu}(x),(\alpha, \beta)=\left(1, \frac{1}{2}\right)$.

Back to Algorithms - Model and Assumptions

Main model:

$$
\text { (P) } \min _{\mathbf{x} \in \mathbb{E}}\{H(\mathbf{x}) \equiv f(\mathbf{x})+h(\mathbf{x})+g(\mathbf{x})\}
$$

(A) $f: \mathbb{E} \rightarrow \mathbb{R}$ is L_{f}-smooth $\left(L_{f}>0\right)$.
(B) $h: \mathbb{E} \rightarrow \mathbb{R}$ is (α, β)-smoothable $(\alpha, \beta>0)$. For any $\mu>0, h_{\mu}$ denotes a $\frac{1}{\mu}$-smooth approximation of h with parameters (α, β).
(C) $g: \mathbb{E} \rightarrow(-\infty, \infty]$ is proper closed and convex.
(D) H has bounded level sets. Specifically, for any $\delta>0$, there exists $R_{\delta}>0$ such that

$$
\|\mathbf{x}\| \leq R_{\delta} \text { for any } \mathbf{x} \text { satisfying } H(\mathbf{x}) \leq \delta .
$$

(E) The optimal set of (P) is nonempty and denoted by X^{*}. The optimal value of the problem is denoted by $H_{\text {opt }}$.

The S-FISTA Method

- The idea is to consider the following smoothed version of (P):

$$
\left(P_{\mu}\right) \quad \min _{\mathbf{x} \in \mathbb{E}}\{H_{\mu}(\mathbf{x}) \equiv \underbrace{f(\mathbf{x})+h_{\mu}(\mathbf{x})}_{F_{\mu}(\mathbf{x})}+g(\mathbf{x})\},
$$

for some $\mu>0$, and solve it using FISTA with constant stepsize.

- A Lipschitz constant of ∇F_{μ} is $L_{f}+\frac{\alpha}{\mu}$; the stepsize is taken as $\frac{1}{L_{f}+\frac{\alpha}{\mu}}$.

S-FISTA

Input: $\mathbf{x}^{0} \in \operatorname{dom}(g), \mu>0$.
Initialization: set $\mathbf{y}^{0}=\mathbf{x}^{0}, t_{0}=1$; construct $h_{\mu}-$ a $\frac{1}{\mu}$-smooth approximation of h with parameters (α, β); set $F_{\mu}=f+h_{\mu}, \tilde{L}=L_{f}+\frac{\alpha}{\mu}$.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) $\mathbf{x}^{k+1}=\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{y}^{k}-\frac{1}{\tilde{L}} \nabla F_{\mu}\left(\mathbf{y}^{k}\right)\right)$;
(b) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$;
(c) $\mathbf{y}^{k+1}=\mathbf{x}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)$.

$O(1 / \varepsilon)$ complexity of S-FISTA

Theorem. Let $\varepsilon \in(0, \bar{\varepsilon})$ for some fixed $\bar{\varepsilon}$. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by S-FISTA with smoothing parameter

$$
\mu=\sqrt{\frac{\alpha}{\beta}} \frac{\varepsilon}{\sqrt{\alpha \beta}+\sqrt{\alpha \beta+L_{f} \varepsilon}} .
$$

Then for any k satisfying

$$
k \geq 2 \sqrt{2 \alpha \beta \Gamma} \frac{1}{\varepsilon}+\sqrt{2 L_{f} \Gamma} \frac{1}{\sqrt{\varepsilon}},
$$

where $\Gamma=\left(R_{H\left(\mathbf{x}^{0}\right)+\frac{\bar{\varepsilon}}{2}}+\left\|\mathbf{x}^{0}\right\|\right)^{2}$, it holds that $H\left(\mathbf{x}^{\kappa}\right)-H_{\mathrm{opt}} \leq \varepsilon$.

Minimization of "Proximable" Functions

Consider the problem

$$
\left(P_{1}\right) \quad \min _{\mathbf{x} \in \mathbb{E}}\{h(\mathbf{x}): \mathbf{x} \in C\},
$$

- C is a nonempty closed and convex set.
- $h: \mathbb{E} \rightarrow \mathbb{R}$ is convex function Lipschitz with constant ℓ_{h}.
- Fits model (P) with $f=0$ and $g=\delta_{C}$.
- $h_{\mu}=M_{h}^{\mu}$ is a $\frac{1}{\mu}$-smooth approximation of h with parameters $(\alpha, \beta)=\left(1, \frac{\ell_{h}^{2}}{2}\right)$.
- $\nabla M_{h}^{\mu}(\mathbf{x})=\frac{1}{\mu}\left(\mathbf{x}-\operatorname{prox}_{\mu h}(\mathbf{x})\right)$.
- After employing $O(1 / \varepsilon)$ iterations of the the S-FISTA method with

$$
\mu=\sqrt{\frac{\alpha}{\beta}} \frac{\varepsilon}{\sqrt{\alpha \beta}+\sqrt{\alpha \beta+L_{f} \varepsilon}}=\sqrt{\frac{\alpha}{\beta}} \frac{\varepsilon}{\sqrt{\alpha \beta}+\sqrt{\alpha \beta}}=\frac{\varepsilon}{2 \beta}=\frac{\varepsilon}{\ell_{h}^{2}},
$$

an ε-optimal solution will be achieved.

- The stepsize is $\frac{1}{L}$, where $\tilde{L}=\frac{\alpha}{\mu}=\frac{1}{\mu}$.

S-FISTA for Solving (P_{1})

- The general step of the S-FISTA method is

$$
\begin{aligned}
\mathbf{x}^{k+1} & =\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{y}^{k}-\frac{1}{\tilde{L}} \nabla F_{\mu}\left(\mathbf{y}^{k}\right)\right)=P_{C}\left(\mathbf{y}^{k}-\frac{1}{\tilde{L} \mu}\left(\mathbf{y}^{k}-\operatorname{prox}_{\mu h}\left(\mathbf{y}^{k}\right)\right)\right) \\
& =P_{C}\left(\operatorname{prox}_{\mu h}\left(\mathbf{y}^{k}\right)\right) .
\end{aligned}
$$

S-FISTA for solving (P_{1})

Initialization: set $\mathbf{y}^{0}=\mathbf{x}^{0} \in C, t_{0}=1$; set $\mu=\frac{\varepsilon}{\ell_{h}^{2}}$ and $\tilde{L}=\frac{\ell_{h}^{2}}{\varepsilon}$.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) $\mathbf{x}^{k+1}=P_{C}\left(\operatorname{prox}_{\mu h}\left(\mathbf{y}^{k}\right)\right)$;
(b) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$;
(c) $\mathbf{y}^{k+1}=\mathbf{x}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)$.

Block Proximal Gradient Methods

- A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods, SIAM J. Optim. (2013)
- M. Hong, X. Wang, M. Razaviyayn, and Z. Q Luo, Iteration complexity analysis of block coordinate descent methods, Arxiv.
- Q. Lin, Z. Lu, and L. Xiao, An accelerated randomized proximal coordinate gradient method and its application to regularized empirical risk minimization, SIAM J. Optim., (2015)
- R. Shefi and M. Teboulle, On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems, EURO J. Comput. Optim. (2016)

Block Proximal Gradient Methods

The Model

(P) $\min _{\mathbf{x}_{1} \in \mathbb{E}_{1}, \mathbf{x}_{2} \in \mathbb{E}_{2}, \ldots, \mathbf{x}_{\rho} \in \mathbb{E}_{p}}\left\{F\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right)=f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right)+\sum_{j=1}^{p} g_{j}\left(\mathbf{x}_{j}\right)\right\}$,

Setting and Notation

- $\mathbb{E}_{1}, \mathbb{E}_{2}, \ldots, \mathbb{E}_{p}$ are Euclidean spaces.
- $\mathbb{E}=\mathbb{E}_{1} \times \mathbb{E}_{2} \times \cdots \times \mathbb{E}_{p}$. We use the notation that a vector $\mathbf{x} \in \mathbb{E}$ can be written as $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right)$.
- The product space is also Euclidean with endowed norm
$\left\|\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right)\right\|_{\mathbb{E}}=\sqrt{\sum_{i=1}^{p}\left\|\mathbf{u}_{i}\right\|_{\mathbb{E}_{i}}^{2}}$.
- $g: \mathbb{E} \rightarrow(-\infty, \infty]$ is defined by $g\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right) \equiv \sum_{i=1}^{p} g_{i}\left(\mathbf{x}_{i}\right)$. (P) can thus be simply written as $\min _{\mathbf{x} \in \mathbb{E}} f(\mathbf{x})+g(\mathbf{x})$
- The gradient w.r.t. the i th block $(i \in\{1,2, \ldots, p\})$ is denoted by $\nabla_{i} f$ $\nabla f(\mathbf{x})=\left(\nabla_{1} f(\mathbf{x}), \nabla_{2} f(\mathbf{x}), \ldots, \nabla_{p} f(\mathbf{x})\right)$.
- For any $i \in\{1,2, \ldots, p\}$ we define $\mathcal{U}_{i}: \mathbb{E}_{i} \rightarrow \mathbb{E}$ to be the linear transformation given by $\mathcal{U}_{i}(\mathbf{d})=(\mathbf{0}, \ldots, \mathbf{0}, \underbrace{\mathbf{d}}_{i \text { th block }}, \mathbf{0}, \ldots, \mathbf{0}), \mathbf{d} \in \mathbb{E}_{i}$.

Underlying Assumption

(A) $g_{i}: \mathbb{E}_{i} \rightarrow(-\infty, \infty]$ is proper closed and convex for any $i \in\{1,2, \ldots, p\}$.
(B) $f: \mathbb{E} \rightarrow \mathbb{R}$ is L_{f}-smooth and convex.
(C) There exist $L_{1}, L_{2}, \ldots, L_{p}>0$ such that for any $i \in\{1,2, \ldots, p\}$ it holds that

$$
\left\|\nabla_{i} f(\mathbf{x})-\nabla_{i} f\left(\mathbf{x}+\mathcal{U}_{i}(\mathbf{d})\right)\right\| \leq L_{i}\|\mathbf{d}\|
$$

for all $\mathbf{x} \in \mathbb{E}$ and $\mathbf{d} \in \mathbb{E}_{j}$.
(D) The optimal set of problem (P) is nonempty and denoted by X^{*}. The optimal value is denoted by F_{opt}.

The Block Proximal Gradient Method

The Block Proximal Gradient Method
Initialization. pick $\mathbf{x}^{0}=\left(\mathbf{x}_{1}^{0}, \mathbf{x}_{2}^{0}, \ldots, \mathbf{x}_{p}^{0}\right) \in \operatorname{int}(\operatorname{dom}(f))$.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) pick $i_{k} \in\{1,2, \ldots, p\}$;
(b) $\mathbf{x}_{j}^{k+1}= \begin{cases}\operatorname{prox}_{\frac{1}{i_{i}}} g_{i_{k}}\left(\mathbf{x}_{i_{k}}-\frac{1}{L_{i_{k}}} \nabla_{i_{k}} f\left(\mathbf{x}^{k}\right)\right), & j=i_{k}, \\ \mathbf{x}_{j}^{k}, & j \neq i_{k} .\end{cases}$

Index selection strategies:

- cyclic. $i_{k}=(k \bmod p)+1$.

Cyclic Block Proximal Gradient (CBPG)

- randomized. i_{k} is randomly picked from $\{1,2, \ldots, p\}$ by a uniform distribution.
Randomized Block Proximal Gradient (RBPG)

$O(1 / k)$ Rate of CBPG

Theorem. Suppose that Assumptions (A-D) hold as well as
(E) For any $\alpha>0$, there exists $R_{\alpha}>0$ such that

$$
\max _{\mathbf{x}, \mathbf{x}^{*} \in \mathbb{E}}\left\{\left\|\mathbf{x}-\mathbf{x}^{*}\right\|: F(\mathbf{x}) \leq \alpha, \mathbf{x}^{*} \in X^{*}\right\} \leq R_{\alpha}
$$

Let $\left\{x^{k}\right\}_{k \geq 0}$ be the sequence generated by the CBPG method. For any $k \geq 2$:

$$
\begin{aligned}
& F\left(\mathbf{x}^{p k}\right)-F_{\mathrm{opt}} \leq \max \left\{\left(\frac{1}{2}\right)^{(k-1) / 2}\left(F\left(\mathbf{x}^{0}\right)-F_{\mathrm{opt}}\right), \frac{8 p\left(L_{f}+L_{\max }\right)^{2} R^{2}}{L_{\min }(k-1)}\right\}, \\
& \text { where } L_{\min }=\min _{i=1,2, \ldots, p} L_{i}, L_{\max }=\max _{i=1,2, \ldots, p} L_{i} \text { and } R=R_{F\left(x^{0}\right)}
\end{aligned}
$$

$O(1 / k)$ Rate of RBPG

Theorem. Suppose that Assumption (A)-(D) hold. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be the sequence generated by the RBPG method. Let $\mathbf{x}^{*} \in X^{*}$. Then for any $k \geq 0$,

$$
\mathrm{E}_{\xi_{k}}\left(F\left(\mathbf{x}^{k+1}\right)\right)-F_{\mathrm{opt}} \leq \frac{p}{p+k+1}\left(\frac{1}{2}\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|_{L}^{2}+F\left(\mathbf{x}^{0}\right)-F_{\mathrm{opt}}\right) .
$$

Here

$$
\|\mathbf{v}\|_{L}^{2} \equiv \sqrt{\sum_{i=1}^{p} L_{i}\left\|\mathbf{v}_{i}\right\|^{2}}
$$

Dual-Based Proximal Gradient Methods

- A. Beck and M. Teboulle, A fast dual proximal gradient algorithm for convex minimization and applications, Oper. Res. Lett. (2014)
- A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process. (2009)
- A. Beck, L. Tetruashvili, Y. Vaisbourd, and A. Shemtov, Rate of convergence analysis of dual-based variables decomposition methods for strongly convex problems, (2016)
- A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision (2004)
- P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim., (1991)

The Main Model

Main Model:

$$
(P) \quad f_{\mathrm{opt}}=\min _{\mathbf{x} \in \mathbb{E}}\{f(\mathbf{x})+g(\mathcal{A}(\mathbf{x}))\},
$$

Underlying Assumptions:
(A) $f: \mathbb{E} \rightarrow(-\infty,+\infty]$ is proper closed and σ-strongly convex $(\sigma>0)$.
(B) $g: \mathbb{V} \rightarrow(-\infty,+\infty]$ is proper closed and convex.
(C) $\mathcal{A}: \mathbb{E} \rightarrow \mathbb{V}$ is a linear transformation.
(D) there exists $\hat{\mathbf{x}} \in \operatorname{ri}(\operatorname{dom}(f))$ and $\hat{\mathbf{z}} \in \operatorname{ri}(\operatorname{dom}(g))$ such that $\mathcal{A}(\hat{\mathbf{x}})=\hat{\mathbf{z}}$.

Existence and uniqueness of optimal solution: under the above assumptions, the objective function is proper closed and strongly convex, and hence there exists a unique optimal solution, which will be denoted by \mathbf{x}^{*}.

Example 1: Orthogonal Projection onto a Polyhedral set

- Let

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}
$$

where $\mathbf{A} \in \mathbb{R}^{p \times n}, \mathbf{b} \in \mathbb{R}^{p}$. Assume that $S \neq \emptyset$.

- Let $\mathbf{d} \in \mathbb{R}^{n}$. The orthogonal projection of \mathbf{d} onto S is the unique optimal solution of

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^{2}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}
$$

- Fits model (P) with $\mathbb{E}=\mathbb{R}^{n}, \mathbb{V}=\mathbb{R}^{p}, f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^{2}$,

$$
g(\mathbf{z})=\delta_{\text {Box }[-\infty e, \mathbf{b}]}(\mathbf{z})= \begin{cases}\mathbf{0}, & \mathbf{z} \leq \mathbf{b}, \\ \infty, & \text { else. }\end{cases}
$$

and $\mathcal{A}(\mathbf{x}) \equiv \mathbf{A x}$.

- $\sigma=1$

Example 2: One-Dimensional Total Variation Denoising

- Denoising problem:

$$
\min _{\mathbf{x} \in \mathbb{E}} \frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^{2}+R(\mathcal{A}(\mathbf{x}))
$$

- $\mathbf{d} \in \mathbb{E}$ - noisy and known signal
- $\mathcal{A}: \mathbb{E} \rightarrow \mathbb{V}$ - linear transformation.
- $R: \mathbb{V} \rightarrow \mathbb{R}_{+}$- regularizing function measuring the magnitude of its argument.
- One-dimensional total variation denoising problem, $\mathbb{E}=\mathbb{R}^{n}, \mathbb{V}=\mathbb{R}^{n-1}, \mathcal{A}(\mathbf{x})=\mathbf{D x}, R(\mathbf{z})=\lambda\|\mathbf{z}\|_{1}(\lambda>0), \mathbf{D}$ defined by $\mathbf{D x}=\left(x_{1}-x_{2}, x_{2}-x_{3}, \ldots, x_{n-1}-x_{n}\right)^{T}$

$$
\left(P_{1}\right) \quad \min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|_{2}^{2}+\lambda\|\mathbf{D} \mathbf{x}\|_{1}\right\}
$$

- More explicitly: $\min _{\mathbf{x} \in \mathbb{E}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|_{2}^{2}+\lambda \sum_{i=1}^{n-1}\left|x_{i}-x_{i+1}\right|\right\}$.
- The function $\mathbf{x} \mapsto\|\mathbf{D} \mathbf{x}\|_{1}$ is a one-dimensional total variation function.
- Fits model (P) with
$\mathbb{E}=\mathbb{R}^{n}, \mathbb{V}=\mathbb{R}^{n-1}, f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^{2}(\sigma=1), g(\mathbf{y})=\lambda\|\mathbf{y}\|_{1}, \mathcal{A}(\mathbf{x}) \equiv \mathbf{D} \mathbf{x}$

The Dual Problem

- (P) is the same as $\min _{\mathbf{x}, \mathbf{z}}\{f(\mathbf{x})+g(\mathbf{z}): \mathcal{A}(\mathbf{x})-\mathbf{z}=\mathbf{0}\}$
- Lagrangian:

$$
L(\mathbf{x}, \mathbf{z} ; \mathbf{y})=f(\mathbf{x})+g(\mathbf{z})-\langle\mathbf{y}, \mathcal{A}(\mathbf{x})-\mathbf{z}\rangle=f(\mathbf{x})+g(\mathbf{z})-\left\langle\mathcal{A}^{T}(\mathbf{y}), \mathbf{x}\right\rangle+\langle\mathbf{y}, \mathbf{z}\rangle .
$$

- Minimizing the Lagrangian w.r.t. \mathbf{x} and \mathbf{z}, we obtain the dual problem

$$
\text { (D) } \quad q_{\mathrm{opt}}=\max _{\mathbf{y} \in \mathbb{V}}\left\{q(\mathbf{y}) \equiv-f^{*}\left(\mathcal{A}^{T}(\mathbf{y})\right)-g^{*}(-\mathbf{y})\right\}
$$

Theorem [strong duality of the pair (P),(D)] $f_{\mathrm{opt}}=q_{\mathrm{opt}}$ and the dual problem (D) attains an optimal solution.

The dual problem in minimization form:

$$
\left(D^{\prime}\right) \quad \min _{\mathbf{y} \in \mathbb{V}}\{F(\mathbf{y})+G(\mathbf{y})\}
$$

$$
\begin{aligned}
F(\mathbf{y}) & \equiv f^{*}\left(\mathcal{A}^{\top}(\mathbf{y})\right), \\
G(\mathbf{y}) & \equiv g^{*}(-\mathbf{y})
\end{aligned}
$$

Rockafellar-Wets Theorem

Theorem [Rockafellar-Wets] Let $\sigma>0$. Then
(a) If $f: \mathbb{E} \rightarrow \mathbb{R}$ is a $\frac{1}{\sigma}$-smooth convex function, then f^{*} is σ-strongly convex.
(b) If $f: \mathbb{E} \rightarrow(-\infty, \infty]$ is a proper closed σ-strongly convex function, then $f^{*}: \mathbb{E} \rightarrow \mathbb{R}$ is $\frac{1}{\sigma}$-smooth.

The Dual Problem

$$
\left(D^{\prime}\right) \min _{\mathbf{y} \in \mathbb{V}}\{F(\mathbf{y})+G(\mathbf{y})\}
$$

Properties of F and G :

(a) $F: \mathbb{V} \rightarrow \mathbb{R}$ is convex and L_{F}-smooth with $L_{F}=\frac{\|\mathcal{A}\|^{2}}{\sigma}$;
(b) $G: \mathbb{V} \rightarrow(-\infty, \infty]$ is proper closed and convex.

Dual Proximal Gradient

Dual Proximal Gradient $=$ Proximal Gradient on (D')

Dual Proximal Gradient - dual representation

- Initialization: pick $\mathbf{y}^{0} \in \mathbb{V}$ and $L \geq L_{F}=\frac{\|\mathcal{A}\|^{2}}{\sigma}$.
- General step $(k \geq 0)$:

$$
\mathbf{y}^{k+1}=\operatorname{prox}_{\frac{1}{L} G}\left(\mathbf{y}^{k}-\frac{1}{L} \nabla F\left(\mathbf{y}^{k}\right)\right)
$$

Theorem [rate of convergence of the dual objective function] Let $\left\{\mathbf{y}^{k}\right\}_{k \geq 0}$ be the sequence generated by the DPG method with $L \geq L_{F}=\frac{\|\mathcal{A}\|^{2}}{\sigma}$. Then for any dual optimal solution $\mathbf{y}^{*} k \geq 1$,

$$
q_{\mathrm{opt}}-q\left(\mathbf{y}^{k}\right) \leq \frac{L\left\|\mathbf{y}^{0}-\mathbf{y}^{*}\right\|^{2}}{2 k}
$$

Constructing a Primal Representation-Technical Lemma

Lemma. Let $F(\mathbf{y})=f^{*}\left(\mathcal{A}^{\top}(\mathbf{y})+\mathbf{b}\right), G(\mathbf{y})=g^{*}(-\mathbf{y})$, where f, g and \mathcal{A} satisfy properties (A),(B) and (C) and $\mathbf{b} \in \mathbb{E}$. Then for any $\mathbf{y}, \mathbf{v} \in \mathbb{V}$ and $L>0$ the relation

$$
\begin{equation*}
\mathbf{y}=\operatorname{prox}_{\frac{1}{L} G}\left(\mathbf{v}-\frac{1}{L} \nabla F(\mathbf{v})\right) \tag{9}
\end{equation*}
$$

holds if and only if

$$
\mathbf{y}=\mathbf{v}-\frac{1}{L} \mathcal{A}(\tilde{\mathbf{x}})+\frac{1}{L} \operatorname{prox}_{L g}(\mathcal{A}(\tilde{\mathbf{x}})-L \mathbf{v}),
$$

where

$$
\tilde{\mathbf{x}}=\underset{\mathbf{x}}{\operatorname{argmax}}\left\{\left\langle\mathbf{x}, \mathcal{A}^{T}(\mathbf{v})+\mathbf{b}\right\rangle-f(\mathbf{x})\right\} .
$$

Dual Proximal Gradient - Primal Representation

The Dual Proximal Gradient (DPG) Method - primal representation

 Initialization: pick $\mathbf{y}^{0} \in \mathbb{V}$, and $L \geq \frac{\|\mathcal{A}\|^{2}}{\sigma}$.General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) set $\mathbf{x}^{k}=\underset{\mathbf{x}}{\operatorname{argmax}}\left\{\left\langle\mathbf{x}, \mathcal{A}^{T}\left(\mathbf{y}^{k}\right)\right\rangle-f(\mathbf{x})\right\}$;
(b) set $\mathbf{y}^{k+1}=\mathbf{y}^{k}-\frac{1}{L} \mathcal{A}\left(\mathbf{x}^{k}\right)+\frac{1}{L} \operatorname{prox}_{L g}\left(\mathcal{A}\left(\mathbf{x}^{k}\right)-L \mathbf{y}^{k}\right)$.

- The sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ generated by the method will be called "the primal sequence", although its elements are not necessarily feasible.

The Primal-Dual Relation

Obtaining a rate of the primal sequence is done using the following result.
Lemma [primal-dual relation] Let $\overline{\mathbf{y}} \in \operatorname{dom}(G)$, and let

$$
\overline{\mathbf{x}}=\underset{\mathbf{x} \in \mathbb{E}}{\operatorname{argmax}}\left\{\left\langle\mathbf{x}, \mathcal{A}^{T}(\overline{\mathbf{y}})\right\rangle-f(\mathbf{x})\right\} .
$$

Then

$$
\left\|\overline{\mathbf{x}}-\mathbf{x}^{*}\right\|^{2} \leq \frac{2}{\sigma}\left(q_{\mathrm{opt}}-q(\overline{\mathbf{y}})\right) .
$$

$O(1 / k)$ Rate of the Primal Sequence Generated by DPG

Theorem. Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ and $\left\{\mathbf{y}^{k}\right\}_{k \geq 0}$ be the primal and dual sequences generated by the DPG method with $L \geq L_{F}$. Then for any optimal dual solution \mathbf{y}^{*} and $k \geq 1$,

$$
\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|^{2} \leq \frac{L\left\|\mathbf{y}^{0}-\mathbf{y}^{*}\right\|^{2}}{\sigma k}
$$

Proof.

$$
\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|^{2} \leq \frac{2}{\sigma}\left(q_{\mathrm{opt}}-q\left(\mathbf{y}^{k}\right)\right) \leq \frac{2}{\sigma} \frac{L\left\|\mathbf{y}^{0}-\mathbf{y}^{*}\right\|^{2}}{2 k},
$$

Fast Dual Proximal Gradient (FDPG) Fast Dual Proximal Gradient $=$ FISTA on (D')

Fast Dual Proximal Gradient (FDPG) - dual representation

- Initialization: $L \geq L_{F}=\frac{\|\mathcal{A}\|^{2}}{\sigma}, \mathbf{w}^{0}=\mathbf{y}^{0} \in \mathbb{E}, t_{0}=1$.
- General Step ($k \geq 0$):
(a) $\mathbf{y}^{k+1}=\operatorname{prox}_{\frac{1}{L} G}\left(\mathbf{w}^{k}-\frac{1}{L} \nabla F\left(\mathbf{w}^{k}\right)\right)$;
(b) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$;
(c) $\mathbf{w}^{k+1}=\mathbf{y}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right)$.

Theorem [rate of convergence of the dual objective function] Let $\left\{\boldsymbol{y}^{k}\right\}_{k \geq 0}$ be the sequence generated by the FDPG method with $L \geq L_{F}=\frac{\|\mathcal{A}\|^{2}}{\sigma}$. Then for any dual optimal solution \mathbf{y}^{*} of and $k \geq 1$,

$$
q_{\mathrm{opt}}-q\left(\mathbf{y}^{k}\right) \leq \frac{2 L\left\|\mathbf{y}^{0}-\mathbf{y}^{*}\right\|^{2}}{(k+1)^{2}} .
$$

Fast Dual Proximal Gradient - Primal Representation

The Fast Dual Proximal Gradient (FDPG) Method - primal representation

Initialization: $L \geq L_{F}=\frac{\|\mathcal{A}\|^{2}}{\sigma}, \mathbf{w}^{0}=\mathbf{y}^{0} \in \mathbb{V}, t_{0}=1$. General step ($k \geq 0$):
(a) $\mathbf{u}^{k}=\underset{\mathbf{u}}{\operatorname{argmax}}\left\{\left\langle\mathbf{u}, \mathcal{A}^{T}\left(\mathbf{w}^{k}\right)\right\rangle-f(\mathbf{u})\right\}$.
(b) $\mathbf{y}^{k+1}=\mathbf{w}^{k}-\frac{1}{L} \mathcal{A}\left(\mathbf{u}^{k}\right)+\frac{1}{L} \operatorname{prox}_{L g}\left(\mathcal{A}\left(\mathbf{u}^{k}\right)-L \mathbf{w}^{k}\right)$
(c) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$
(d) $\mathbf{w}^{k+1}=\mathbf{y}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right)$.

$O\left(1 / k^{2}\right)$ Rate of the Primal Sequence Generated by FDPG

Theorem Let $\left\{\boldsymbol{x}^{k}\right\}_{k \geq 0}$ and $\left\{\boldsymbol{y}^{k}\right\}_{k \geq 0}$ be the primal and dual sequences generated by the FDPG method with $L \geq L_{F}=\frac{\|\mathcal{A}\|^{2}}{\sigma}$. Then for any optimal dual solution \mathbf{y}^{*} and $k \geq 1$,

$$
\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|^{2} \leq \frac{4 L\left\|\mathbf{y}^{0}-\mathbf{y}^{*}\right\|^{2}}{\sigma(k+1)^{2}} .
$$

Proof.

$$
\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|^{2} \leq \frac{2}{\sigma}\left(q_{\mathrm{opt}}-q\left(\mathbf{y}^{k}\right)\right) \leq \frac{2}{\sigma} \cdot \frac{2 L\left\|\mathbf{y}^{0}-\mathbf{y}^{*}\right\|^{2}}{(k+1)^{2}} .
$$

Example 1: Orthogonal Projection onto a Polyhedral set

$$
\left(P_{1}\right) \min _{x \in \mathbb{R}^{-}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^{2}: \mathbf{A x} \leq \mathbf{b}\right\} .
$$

- Fits model (P) with $\mathbb{E}=\mathbb{R}^{n}, \mathbb{V}=\mathbb{R}^{p}, f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^{2}$,

$$
g(\mathbf{z})=\delta_{\text {Box }[-\infty e, b]}(\mathbf{z})= \begin{cases}\mathbf{0}, & \mathbf{z} \leq \mathbf{b}, \\ \infty, & \text { else. }\end{cases}
$$

and $\mathcal{A}(\mathbf{x}) \equiv \mathbf{A} \mathbf{x}$.

- $\sigma=1$
- $\operatorname{argmax}\{\langle\mathbf{v}, \mathbf{x}\rangle-f(\mathbf{x})\}=\mathbf{v}+\mathbf{d}$ for any $\mathbf{v} \in \mathbb{R}^{n} ;$
- $\|\mathcal{A}\|=\|\mathbf{A}\|_{2,2}$;
- $\mathcal{A}^{T}(\mathbf{y})=\mathbf{A}^{T} \mathbf{y}$ for any $\mathbf{y} \in \mathbb{R}^{p}$;
- $\operatorname{prox}_{\mathrm{Lg}}(\mathbf{z})=P_{\text {Box }[-\infty \mathbf{e}, \mathbf{b}]}(\mathbf{z})=\min \{\mathbf{z}, \mathbf{b}\}$.

DPG and FDPG for solving $\left(P_{1}\right)$

Algorithm 1 [DPG for solving (P_{1})]

- Initialization: $L \geq\|\mathbf{A}\|_{2,2}^{2}, \mathbf{y}^{0} \in \mathbb{R}^{p}$.
- General Step ($k \geq 0$):
(a) $\mathbf{x}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}+\mathbf{d}$;
(b) $\mathbf{y}^{k+1}=\mathbf{y}^{k}-\frac{1}{L} \mathbf{A} \mathbf{x}^{k}+\frac{1}{L} \min \left\{\mathbf{A} \mathbf{x}^{k}-L \mathbf{y}^{k}, \mathbf{b}\right\}$.

Algorithm 2 [FDPG for solving $\left(P_{1}\right)$]

- Initialization: $L \geq\|\mathbf{A}\|_{2,2}^{2}, \mathbf{w}^{0}=\mathbf{y}^{0} \in \mathbb{R}^{p}, t_{0}=1$.
- General Step ($k \geq 0$):
(a) $\mathbf{u}^{k}=\mathbf{A}^{T} \mathbf{w}^{k}+\mathbf{d}$;
(b) $\mathbf{y}^{k+1}=\mathbf{w}^{k}-\frac{1}{L} \mathbf{A} \mathbf{u}^{k}+\frac{1}{L} \min \left\{\mathbf{A} \mathbf{u}^{k}-L \mathbf{w}^{k}, \mathbf{b}\right\}$;
(c) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$;
(d) $\mathbf{w}^{k+1}=\mathbf{y}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right)$.

Example $1 \frac{1}{2}$: Orthogonal Projection onto the Intersection

 of Closed Convex Sets$$
\text { (P2) } \min _{x \in \mathbb{E}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^{2}: \mathbf{x} \in \cap_{i=1}^{p} c_{i}\right\} \text {. }
$$

- $C_{1}, C_{2}, \ldots, C_{p} \subseteq \mathbb{E}$ closed and convex.
- $\mathbf{d} \in \mathbb{E}$.
- Assume that $\cap_{i=1}^{p} C_{i} \neq \emptyset$ and that projecting onto each set C_{i} is an easy task.
- $\left(P_{2}\right)$ fits model (P) with

$$
\begin{aligned}
& \mathbb{V}=\mathbb{E}^{p}, f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^{2}, g\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right)=\sum_{i=1}^{p} \delta_{c_{i}}\left(\mathbf{x}_{i}\right) \text { and } \\
& \mathcal{A}: \mathbb{E} \rightarrow \mathbb{V}, \mathcal{A}(\mathbf{z})=(\underbrace{\mathbf{z}, \mathbf{z}, \ldots, \mathbf{z}}_{p \text { times }})
\end{aligned}
$$

- $\operatorname{argmax}\{\langle\mathbf{v}, \mathbf{x}\rangle-f(\mathbf{x})\}=\mathbf{v}+\mathbf{d}$ for any $\mathbf{v} \in \mathbb{E}$;
- $\|\mathcal{A}\|^{2}=p$;
- $\sigma=1$;
- $\mathcal{A}^{T}(\mathbf{y})=\sum_{i=1}^{p} y_{i}$ for any $\mathbf{y} \in \mathbb{E}^{p}$;
- $\operatorname{prox}_{L g}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right)=\left(P_{C_{1}}\left(\mathbf{v}_{1}\right), P_{C_{2}}\left(\mathbf{v}_{2}\right), \ldots, P_{C_{p}}\left(\mathbf{v}_{p}\right)\right)$ for any $\mathbf{v} \in \mathbb{E}^{p}$.

DPG and FDPG for Solving (P_{2})

Algorithm 3 [DPG for solving $\left(P_{2}\right)$]

- Initialization: $L \geq p, \mathbf{y}^{0} \in \mathbb{E}^{p}$.
- General Step ($k \geq 0$):
(a) $\mathbf{x}^{k}=\sum_{i=1}^{p} \mathbf{y}_{i}^{k}+\mathbf{d}$;
(b) $\mathbf{y}_{i}^{k+1}=\mathbf{y}_{i}^{k}-\frac{1}{L} \mathbf{x}^{k}+\frac{1}{L} P_{C_{i}}\left(\mathbf{x}^{k}-L \mathbf{y}_{i}^{k}\right), i=1,2, \ldots, p$.

Algorithm 4 [FDPG for solving $\left(P_{2}\right)$]

- Initialization: $L \geq p, \mathbf{w}^{0}=\mathbf{y}^{0} \in \mathbb{E}^{p}, t_{0}=1$.
- General Step ($k \geq 0$):
(a) $\mathbf{u}^{k}=\sum_{i=1}^{p} \mathbf{w}_{i}^{k}+\mathbf{d}$;
(b) $\mathbf{y}_{i}^{k+1}=\mathbf{w}_{i}^{k}-\frac{1}{L} \mathbf{u}^{k}+\frac{1}{L} P_{C_{i}}\left(\mathbf{u}^{k}-L \mathbf{w}_{i}^{k}\right)$,
$i=1,2, \ldots, p$;
(c) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$;
(d) $\mathbf{w}^{k+1}=\mathbf{y}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right)$.

Orthogonal Projection onto a Polyhedral Set Revisited

- Algorithm 4 can also be used to find an orthogonal projection of a point $\mathbf{d} \in \mathbb{R}^{n}$ onto the polyhedral set $C=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A x} \leq \mathbf{b}\right\}$, where $\mathbf{A} \in \mathbb{R}^{p \times n}, \mathbf{b} \in \mathbb{R}^{p}$.
- Can be written as $C=\cap_{i=1}^{p} C_{i}$, where $C_{i}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}\right\}$ with $\mathbf{a}_{1}^{T}, \mathbf{a}_{2}^{T}, \ldots, \mathbf{a}_{p}^{T}$ being the rows of \mathbf{A}.
- $P_{C_{i}}(\mathbf{x})=\mathbf{x}-\frac{\left[\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right]_{+}}{\left\|\mathbf{a}_{i}\right\|^{2}} \mathbf{a}_{i}$.

Algorithm 5 [FDPG for solving $\left(P_{1}\right)$]

- Initialization: $L \geq p, \mathbf{w}^{0}=\mathbf{y}^{0} \in \mathbb{E}^{p}, t_{0}=1$.
- General Step ($k \geq 0$):
(a) $\mathbf{u}^{k}=\sum_{i=1}^{p} \mathbf{w}_{i}^{k}+\mathbf{d}$;
(b) $\mathbf{y}_{i}^{k+1}=-\frac{1}{L\left\|\mathbf{a}_{i}\right\|^{2}}\left[\mathbf{a}_{i}^{T}\left(\mathbf{u}^{k}-L \mathbf{w}_{i}^{k}\right)-b_{i}\right]_{+} \mathbf{a}_{i}, i=1,2, \ldots, p$;
(c) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$;
(d) $\mathbf{w}^{k+1}=\mathbf{y}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right)$.

Comparison Between DPG and FDPG - Numerical

Example

- Consider the problem of projecting the point $(0.5,1.9)^{T}$ onto a dodecagon a regular polygon with 12 edges represented as the intersection of 12 half-spaces.
- The first 10 iterations of the DPG (Algorithm 3) and FDPG (Algorithm 4/5) methods with $L=p=12$ can be seen below.

Example 2: One-Dimensional Total Variation Denoising

$$
\left(P_{3}\right) \min _{x \in \mathbb{R}^{n}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|_{2}^{2}+\lambda\|\mathbf{D} \mathbf{x}\|_{1}\right\},
$$

- Fits model (P) with
$\mathbb{E}=\mathbb{R}^{n}, \mathbb{V}=\mathbb{R}^{n-1}, f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}-\mathbf{d}\|^{2}(\sigma=1), g(\mathbf{y})=\lambda\|\mathbf{y}\|_{1}, \mathcal{A}(\mathbf{x}) \equiv \mathbf{D} \mathbf{x}$
- $\underset{\mathbf{x}}{\operatorname{argmax}}\{\langle\mathbf{v}, \mathbf{x}\rangle-f(\mathbf{x})\}=\mathbf{v}+\mathbf{d}$ for any $\mathbf{v} \in \mathbb{E}$;
- $\|\mathcal{A}\|^{2}=\|\mathbf{D}\|_{2,2}^{2} \leq 4$;
- $\sigma=1$;
- $\mathcal{A}^{T}(\mathbf{y})=\mathbf{D}^{T} \mathbf{y}$ for any $\mathbf{y} \in \mathbb{R}^{n-1}$;
$-\operatorname{prox}_{L \mathcal{L}}(\mathbf{y})=\mathcal{T}_{\lambda L}(\mathbf{y})$.

Example 3 Contd.

Algorithm 6 [DPG for solving $\left(P_{3}\right)$]

- Initialization: $\mathbf{y}^{0} \in \mathbb{R}^{n-1}$.
- General Step $(k \geq 0)$:
(a) $\mathbf{x}^{k}=\mathbf{D}^{T} \mathbf{y}^{k}+\mathbf{d}$;
(b) $\mathbf{y}^{k+1}=\mathbf{y}^{k}-\frac{1}{4} \mathbf{D} \mathbf{x}^{k}+\frac{1}{4} \mathcal{T}_{4 \lambda}\left(\mathbf{D} \mathbf{x}^{k}-4 \mathbf{y}^{k}\right)$.

Algorithm 7 [FDPG for solving $\left(P_{3}\right)$]

- Initialization: $\mathbf{w}^{0}=\mathbf{y}^{0} \in \mathbb{R}^{n-1}, t_{0}=1$.
- General Step ($k \geq 0$):
(a) $\mathbf{u}^{k}=\mathbf{D}^{T} \mathbf{w}^{k}+\mathbf{d}$;
(b) $\mathbf{y}^{k+1}=\mathbf{w}^{k}-\frac{1}{4} \mathbf{D} \mathbf{u}^{k}+\frac{1}{4} \mathcal{T}_{4 \lambda}\left(\mathbf{D} \mathbf{u}^{k}-4 \mathbf{w}^{k}\right)$;
(c) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$;
(d) $\mathbf{w}^{k+1}=\mathbf{y}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right)$.

Numerical Example

- $n=1000$
- d is a noisy measurement of a step function.

Numerical Example Contd.

- 100 iterations of Algorithms 6 (DPG) and 7 (FDPG) initialized with $\mathbf{y}^{0}=\mathbf{0}$.

- Objective function values of the DPG and FDPG methods after 100 iterations are 9.1667 and 8.4621 respectively; the optimal value is 8.3031 .

The Dual Block Proximal Gradient Method

The Model

$$
\text { (Q) } \min _{\mathbf{x} \in \mathbb{E}}\left\{f(\mathbf{x})+\sum_{i=1}^{p} g_{i}(\mathbf{x})\right\} .
$$

Underlying Assumptions.

(A) $f: \mathbb{E} \rightarrow(-\infty,+\infty]$ is proper closed and σ-strongly convex $(\sigma>0)$.
(B) $g_{i}: \mathbb{E} \rightarrow(-\infty,+\infty]$ is proper closed and convex for any $i \in\{1,2, \ldots, p\}$.
(C) $\mathrm{ri}(\operatorname{dom}(f)) \cap\left(\cap_{i=1}^{p} \mathrm{ri}\left(\operatorname{dom}\left(g_{i}\right)\right)\right) \neq \emptyset$.

Problem (Q) fits model (P) with
$\mathbb{V}=\mathbb{E}^{p}, g\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right)=\sum_{i=1}^{p} g_{i}\left(\mathbf{x}_{i}\right), \mathcal{A}(\mathbf{z})=(\underbrace{\mathbf{z}, \mathbf{z}, \ldots, \mathbf{z}}_{p \text { times }})$.

- $\|\mathcal{A}\|^{2}=p$;
- $\mathcal{A}^{T}(\mathbf{y})=\sum_{i=1}^{p} y_{i}$ for any $\mathbf{y} \in \mathbb{E}^{p}$;
$-\operatorname{prox}_{L g}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right)=\left(\operatorname{prox}_{L g_{1}}\left(\mathbf{v}_{1}\right), \operatorname{prox}_{\operatorname{Lg}_{2}}\left(\mathbf{v}_{2}\right), \ldots, \operatorname{prox}_{L g_{p}}\left(\mathbf{v}_{p}\right)\right)$

FDPG for Solving (Q)

Algorithm 9 [FDPG for solving (Q)]

- Initialization: $\mathbf{w}^{0}=\mathbf{y}^{0} \in \mathbb{E}^{p}, t_{0}=1$.
- General Step ($k \geq 0$):
(a) $\mathbf{u}^{k}=\underset{\mathbf{u} \in \mathbb{E}}{\operatorname{argmax}}\left\{\left\langle\mathbf{u}, \sum_{i=1}^{p} \mathbf{w}_{i}^{k}\right\rangle-f(\mathbf{u})\right\}$;
(b) $\mathbf{y}_{i}^{k+1}=\mathbf{w}_{i}^{k}-\frac{\sigma}{p} \mathbf{u}^{k}+\frac{\sigma}{p} \operatorname{prox} \frac{p}{\sigma} g_{i}\left(\mathbf{u}^{k}-\frac{p}{\sigma} \mathbf{w}_{i}^{k}\right), i=1,2, \ldots, p$;
(c) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$;
(d) $\mathbf{w}^{k+1}=\mathbf{y}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right)$.

The Dual Block Proximal Gradient Method

- A major disadvantage of Algorithm 9 is the stepsize it uses.
- A way to circumvent this drawback is to employ a dual block proximal gradient method.
- A dual problem to (Q):

$$
(D Q) \quad q_{\mathrm{opt}}=\max _{\mathbf{y} \in \mathbb{E}^{p}}\{-f^{*}\left(\sum_{i=1}^{p} \mathbf{y}_{i}\right)-\sum_{i=1}^{p} \underbrace{g_{i}^{*}\left(-\mathbf{y}_{i}\right)}_{G_{i}\left(\mathbf{y}_{i}\right)}\} .
$$

- Suppose that the current point is $\mathbf{y}^{k}=\left(\mathbf{y}_{1}^{k}, \mathbf{y}_{2}^{k}, \ldots, \mathbf{y}_{p}^{k}\right)$. At each iteration we pick an index i according to some rule and perform a proximal gradient step on ith block:

$$
\mathbf{y}_{i}^{k+1}=\operatorname{prox}_{\sigma G_{i}}\left(\mathbf{y}_{i}^{k}-\sigma \nabla f^{*}\left(\sum_{j=1}^{p} \mathbf{y}_{j}^{k}\right)\right) .
$$

Dual Representation

The Dual Block Proximal Gradient (DBPG) Method - dual representation

- Initialization: pick $\mathbf{y}^{0}=\left(\mathbf{y}_{1}^{0}, \mathbf{y}_{2}^{0}, \ldots, \mathbf{y}_{p}^{0}\right) \in \mathbb{E}^{p}$.
- General step $(k \geq 0)$:
- pick an index $i_{k} \in\{1,2, \ldots, p\}$;
- compute $\mathbf{y}_{j}^{k+1}= \begin{cases}\operatorname{prox}_{\sigma G_{i_{k}}}\left(\mathbf{y}_{i_{k}}^{k}-\sigma \nabla f^{*}\left(\sum_{j=1}^{p} \mathbf{y}_{j}^{k}\right)\right), & j=i_{k}, \\ \mathbf{y}_{j}^{k}, & j \neq i_{k} .\end{cases}$

Lemma. The relation $\mathbf{y}_{i}=\operatorname{prox}_{\frac{1}{L} G_{i}}\left(\mathbf{v}_{i}-\frac{1}{L} \nabla f^{*}\left(\sum_{j=1}^{p} \mathbf{v}_{j}\right)\right)$ holds if and only if

$$
\mathbf{y}_{i}=\mathbf{v}_{i}-\frac{1}{L} \tilde{\mathbf{x}}+\frac{1}{L} \operatorname{prox}_{L g_{i}}\left(\tilde{\mathbf{x}}-L \mathbf{v}_{i}\right),
$$

where $\tilde{\mathbf{x}}=\underset{\mathbf{x} \in \mathbb{E}}{\operatorname{argmax}}\left\{\left\langle\mathbf{x}, \sum_{j=1}^{p} \mathbf{v}_{j}\right\rangle-f(\mathbf{x})\right\}$.

Primal Representation

The Dual Block Proximal Gradient (DBPG) Method - primal representation

Initialization. pick $\mathbf{y}^{0}=\left(\mathbf{y}_{1}^{0}, \mathbf{y}_{2}^{0}, \ldots, \mathbf{y}_{p}^{0}\right) \in \mathbb{E}$.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) pick $i_{k} \in\{1,2, \ldots, p\}$.
(b) set $\mathbf{x}^{k}=\underset{\mathbf{x} \in \mathbb{E}}{\operatorname{argmax}}\left\{\left\langle\mathbf{x}, \sum_{j=1}^{p} \mathbf{y}_{j}^{k}\right\rangle-f(\mathbf{x})\right\}$.
(c) set $\mathbf{y}_{j}^{k+1}= \begin{cases}\mathbf{y}_{i_{k}}^{k}-\sigma \mathbf{x}^{k}+\sigma \operatorname{prox}_{g_{i} / \sigma}\left(\mathbf{x}^{k}-\mathbf{y}_{i_{k}}^{k} / \sigma\right), & j=i_{k}, \\ \mathbf{y}_{j}^{k}, & j \neq i_{k} .\end{cases}$

Possible stepsize strategies.

- cyclic. $i_{k}=(k \bmod p)+1$.
- randomized. i_{k} is randomly picked from $\{1,2, \ldots, p\}$ by a uniform distribution.

Rates of Convergence of the Cyclic and Randomized DBPG Methods

- $O(1 / k)$ rates of convergence of the sequences of dual objective function values follow by the corresponding results on the block proximal gradient method.
- $O(1 / k)$ rates of the primal sequence follow by the primal-dual relation.

Cyclic:

(a) $q_{\mathrm{opt}}-q\left(\mathbf{y}^{p k}\right) \leq \max \left\{\left(\frac{1}{2}\right)^{(k-1) / 2}\left(q_{\mathrm{opt}}-q\left(\mathbf{y}^{0}\right)\right), \frac{8 p(p+1)^{2} R^{2}}{\sigma(k-1)}\right\}$.
(b) $\left\|\mathbf{x}^{p k}-\mathbf{x}^{*}\right\|^{2} \leq \frac{2}{\sigma} \max \left\{\left(\frac{1}{2}\right)^{(k-1) / 2}\left(q_{\mathrm{opt}}-q\left(\mathbf{y}^{0}\right)\right), \frac{8 p(p+1)^{2} R^{2}}{\sigma(k-1)}\right\}$.

Randomized:
(a) $q_{\text {opt }}-\mathrm{E}_{\xi_{k}}\left(q\left(\mathbf{y}^{k+1}\right)\right) \leq \frac{p}{p+k+1}\left(\frac{1}{2 \sigma}\left\|\boldsymbol{y}^{0}-\mathbf{y}^{*}\right\|^{2}+q_{\mathrm{opt}}-q\left(\mathbf{y}^{0}\right)\right)$.
(b) $\mathrm{E}_{\xi_{k}}\left\|\mathbf{x}^{k+1}-\mathbf{x}^{*}\right\|^{2} \leq \frac{2 p}{\sigma(p+k+1)}\left(\frac{1}{2 \sigma}\left\|\mathbf{y}^{0}-\mathbf{y}^{*}\right\|^{2}+q_{\mathrm{opt}}-q\left(\mathbf{y}^{0}\right)\right)$.

THE END

THANK YOU FOR YOUR ATTENTION

